Days: Discrete-Event Network
Simulation on Steroids

Baochun Li
Department of Electrical and Computer Engineering
University of Toronto

Abstract—As large foundation models are routinely trained
with hundreds of thousands of GPU compute nodes, the need for
simulating a computer network at scale has become more critical
and relevant than ever. Without a doubt, packet-level discrete-
event simulation (DES) offers the finest granularity, and thus
the highest accuracy. Unfortunately, conventional discrete-event
simulators were widely known to be slow, and thus unable to
accommodate the scale of modern networks. Recent work in the
literature attempted to estimate the performance of large-scale
networks using deep neural network models, but such estimation
inevitably leads to a loss of packet-level accuracy, when compared
to the ground truth from discrete-event simulators.

But is it really the case that discrete-event simulators are
not performant at scale? In this paper, we advocate that a
process-based design is a simpler, more scalable, and performant
choice than the current event-based design. We challenge the
conventional wisdom that discrete-event simulators lack scalabil-
ity, and progressively introduce the design and implementation
of two new DES frameworks, ns.py and Days, built using Python
and Rust, and with modern development advances in gen-
erators, asynchronous programming, and stackless coroutines.
Our new simulation frameworks are designed to be lean and
performant, outperforming existing discrete-event simulators and
performance estimators by up to three orders of magnitude.

I. INTRODUCTION

As serverless web services span multiple geographically
distributed regions and large foundation models are trained
with tens of thousands of GPU compute nodes [1], [2],
there is a pressing need for evaluating new network proto-
cols and resource scheduling mechanisms at scale in modern
communication networks [3]], [4]. For four decades, discrete-
event simulation (DES) frameworks [5], [6], [Z], [8], [9],
[LO], [11] have offered the best possible accuracy and the
finest granularity, as they kept track of every packet traveling
through modern networks that we wish to study. However, it
has been widely accepted common knowledge that existing
DES frameworks were slow, and failed to offer acceptable
performance at the scale of modern networks. In contrast, from
the perspective of raw computing power, we have witnessed
speed improvements over four decades by a few orders of
magnitude, made possible by advances in both single-core
performance and multi-core architectures.

In the literature, there have been two pathways to improve
DES performance: parallel discrete-event simulation (PDES)
and network performance estimation. It has been shown since
four decades ago that one can use a conservative [12] or an op-
timistic protocol [[13] to parallelize discrete-event simulation.
Despite claims to the contrary in the recent literature [[14], [15],

these parallelization strategies from decades ago were quite ef-
fective in our experience. More recently, network performance
estimation at the packet level, represented by RouteNet [16],
MimicNet [15]], and DeepQueueNet [17]], became the de facto
alternative to discrete-event simulation.

But why are existing DES frameworks so slow? As they
were consistently implemented with high-performance pro-
gramming languages — NEST [5] and REAL [6] used C
and all modern DES frameworks used C++ — it can be
intuitively concluded that their lack of performance at scale
was due to the inherent design of discrete-event simulation in
general. Conceptually, however, discrete-event simulation is
rather simple: the simulated network only changes its state at
discrete points in simulation time, and migrates from one state
to another upon the occurrence of an event. Therefore, modern
DES frameworks for network simulation, including ns-3 [9],
OPNET [10], and OmNeT++ [[11], were all built based on the
design involving an event queue and a scheduler: the event
queue holds all unprocessed future events in their timestamp
order, and the scheduler simply processes events in the event
queue in order. As each event is processed, more events may
be produced and inserted into the event queue.

However, such an event-based design is not the only way to
build a DES framework. The classic design is process-based
simulation, dating back six decades to Conway’s abstraction
of coroutines (1963) [18]] and the semantics of process in the
SIMULA programming language (1967) [19]]. Fundamentally,
such a classic abstraction of coroutines represents threads
of execution that communicate with one another by passing
messages. We advocate that the classic process-based design
is simpler and promotes inherent concurrency, since each
network element is represented by a coroutine that makes
live progress over time, and is concurrent with all other
network elements. Packets transmitted between network ele-
ments correspond naturally to messages passed over channels
established between coroutines.

From the perspective of complexity and scalability, why do
we promote a process-based design? After all, event-based
designs are object-oriented as well, and each network element
is represented as an object instead of a coroutine. In a nutshell,
a process-based design enjoys two clear advantages. First,
it is simpler to implement a new network element with a
coroutine, because it is easier to conceive — and less error-
prone to model — an element as an isolated entity with a
fixed set of inputs and outputs, communicating with the other
elements through message passing only. Fundamentally, a

process-based design utilizes the actor model [20], [21]], where
each actor maintains its private states and can only affect
one another indirectly through message passing. Second, it is
more performant because coroutines (or actors) are naturally
concurrent with a potentially higher degree of parallelism,
while all the objects in an event-based design must share the
global event queue and its scheduler within the same thread
of execution. To accommodate a larger scale, one only needs
to launch more coroutines in a process-based design, rather
than partitioning the network and using elaborate and complex
PDES mechanisms [12]], [13], [22].

In this paper, we progressively introduce fwo new open-
source DES frameworks for network simulatio using
process-based designs. As a starting point, ns.py serves as
a simple, proof-of-concept prototype developed in Python,
just to explore the potential benefits of process-based designs
using Python’s generators, and to utilize the flexibility offered
by Python’s dynamic types to construct complex switches
with simple elements. Despite the fact that Python is not
known to be fast, ns.py shows excellent performance and
outperforms ns-3, OmNeT++, and even DONS [14], the state-
of-the-art DES framework. To build the most performant DES
framework possible, our second DES framework, called Days,
is built with Rust, taking advantage of its compiler guarantees
for concurrency without data races. Days is designed to use
stackless coroutines, utilizing the foundation of either a lock-
free single-threaded executor for maximum single-threaded
performance, or a multi-threaded executor for maximizing
concurrency in large-scale simulation runs.

Highlights of our original contributions in this paper are
twofold. From the perspective of design, we present two new
DES frameworks with progressively better performance, and
show convincing evidence that a process-based design is a
simple, scalable, and performant choice for building DES
frameworks of the next generation. Its stellar performance
is made possible by asynchronous programming and stack-
less coroutines, two of the landmark advances in modern
concurrent software development. From the perspective of
performance, we present best practices on how a performant
DES framework should be built with Rust, as well as our
first-hand experiences building Days, which outperforms all
existing work — DES frameworks and performance estimation
tools alike — by at least an order of magnitude. As one
example, in a FatTree-32 topology with 4096 flows, ns.py and
Days delivered speedups of 29x and 1574 x, respectively, over
DONS [14].

II. MOTIVATION AND RELATED WORK

Due to its value in a wide range of engineering fields,
discrete-event simulation (DES) frameworks have been widely
studied and used over the past six decades. To build a
DES framework, there have always been two alternative de-
sign choices: a process-based or an event-based design. The
process-based design dates back to the abstraction of corou-
tines as originally envisioned by Conway [18] in 1963, and

IThe source code and full documentation of both ns.py and Days can be
found at their official website: https://days.sh.

the SIMULA programming language in 1967 [19]. SIMULA,
and a variety of similar later attempts such as Ada [23], have
shown that coroutines are sufficient to simulate discrete-time
events.

Process-based design. In a process-based design, a network
element to be simulated is modeled as a coroutine, which
is simply a thread of execution that can be suspended at
predefined points of execution, and resumed to a state that
it left off before suspension. When coroutines wish to interact
with one another, they do so by passing messages. From an
implementation perspective, coroutines can be implemented
in a variety of ways in modern operating systems. User-
level processes naturally implement such an abstraction, and
communicate with each other using inter-process communica-
tion. IBM’s NEST [5] and Berkeley’s REAL [6] used user-
level threads that shared the same virtual address space, and
communication was implicit via shared memory.

When using process-based simulation in DES frameworks,
all coroutines must be coupled with a globally shared fictitious
simulation clock, which is a double-precision floating-point
variable that represents discrete points in simulation time.
A dedicated executor, first introduced by SIMULA [19], is
needed to advance the simulation clock and coordinate the
execution of coroutines, analogous to a runtime manager
designed specifically for simulations.

Event-based design. Intuitively, an event in a DES frame-
work occurs at a discrete time on the simulation clock, and
migrates the simulated system from one state to another.
An event-based design models each network element as an
object that handles events with event handler functions, and
as an event is handled, more events may be produced. All
unprocessed events are stored in an event queue, sorted by
their timestamps. An event scheduler simply processes events
consecutively by their timestamp order. The LBNL Network
Simulator, ns version 1 (circa 1994), was the first DES
framework that migrated network simulation from a process-
based design used by its predecessors to an event-based design.

Design choices. From the point of view of complexity,
it is typically simpler to implement a network element as a
coroutine with a process-based design, rather than as an object
with an event-based design. This is due to the fact that the
runtime logic of a network element is a sequential algorithm,
and it is cognitively easier to implement a sequential algorithm
as it is designed step by step, rather than remodeling its logic
to multiple handlers responding to events within a finite state
machine.

Consider a Deficit Round Robin (DRR) scheduler [24],
for example, in Fig. [[(a) and Fig. [I(b). To model it as a
finite state machine with an event-based design, we need to
separate its logic into several handlers, corresponding to events
such as when an inbound packet arrives (recv()) and when
an outbound packet finishes transmission (timeout()). To
correctly implement these handlers, one needs to remember
certain states, such as the upcoming queue to visit in a round-
robin fashion, as well as the deficit counter for each queue.
When existing events are handled, new events will be produced
and inserted back into the event queue. In contrast, if we
model it as a coroutine, the DRR scheduler can be simply

https://days.sh

queue /" DRRObject #1 7\ | /DRR Coroutine #1", / DRR Coroutine #2)\ | Upstream Downstream
recv(p1) -1 “fnrecv(p) State | / DRR Generator #1 /DRR Generator #2 \
t(';ne?g;)t 1 —1c>D enqueue(p) upcoming deficit loop 3 loop ¢ : |§op “loop 3
2 ; ; D:l] [:] ifin = recv() | =>ifin = recv() g = next_queue() g = next_queue()
recv.(p)4 “fn timeout(d) i D:D D enqueue(in) W enqueue(in) out = yield dequeue(q) out = yield dequeue(q)
; L’D q = next_queue() | @ q = next_queue() |:| [yield timeout(delay) yield timeout(delay)
J send(p2)—! D:l] [j out = dequeue(q) § out = dequeue(q) |}| | (downstream.put(out) — | (downstream.put(out)
HIRE! é j . / : timeout(delay) Ij timeout(delay) -
H HE n put
DRR Object #2 e ?,eljd(?u,l,), T : ,se,r,}d(,ou,t) e *D gnq(jzue(p)
fnrecv(p) i S_tati ol) I : /
g 4 D é Qupcommg eficit : Time
4. i H
U enqgeue(p) ; D]] [j E ‘Corountine #1 l Corountine #2 ‘ Corountine #1 ‘ E l Runtime executor l
hedul et i | " :
scheduler : Runtimelexecutor, (c) Process-based Deficit Round Robin

(a) Event-based Deficit Round Robin

(b) Process-based Deficit Round Robin

with Python generator functions

Fig. 1. Deficit Round Robin scheduler: Event-based vs. process-based designs. To implement a process-based design, one can use cooperatively scheduled

coroutines (b) or generator functions supported by Python (c).

implemented as a loop. In each iteration, it receives inbound
packets, moves on to the next queue, and selects and sends
one or several outbound packets in a round-robin fashion. All
packets are sent by passing messages between coroutines.

Data-oriented design. A recently proposed DES frame-
work, called DONS [14], proposed a different way of increas-
ing the degree of parallelism by using a data-oriented design
using the Unity game engine, traditionally used for developing
games [25]. To improve cache consistency, DONS proposed
to store data of the same type (e.g., timestamps in all the
packets) together; and to improve data parallelism, it advocated
processing a batch of data (e.g., packets) concurrently using
multiple threads. Unfortunately, in more complex cases such
as with Weighted Fair Queueing (WFQ) schedulers [26]],
packets will need to be individually processed consecutively
for correctness, as the choice of the next packet to be for-
warded depends on previous decisions. As such, the degree of
data parallelism may be limited in most simulation scenarios
if discrete events are to be strictly processed in the order
of their timestamps. If such strict order can be moderately
relaxed, Days incorporates several optimizations — such as
time quantization — that exploit data parallelism as well, albeit
at a slight cost in accuracy.

Network performance estimation. In recent years, network
performance estimation tools [15]], [[16], [L7] were proposed
to address the lack of scalability with DES frameworks by
accepting a moderate loss of accuracy as a trade-off, as
compared to the ground truth produced by full-fidelity DES
frameworks. The general strategy, shared by all performance
estimation tools, is to use a deep neural network (DNN) model
to represent a portion of the network topology or a single
network device, and to train it using ground-truth datasets
from DES frameworks. After the DNN model has been trained
properly, it can be used for inference on GPUs using batches of
packets as inputs, and important performance metrics — such
as throughput, round-trip times, and flow completion times —
can be deducted. The loss of accuracy, compared to ground
truth from DES frameworks, is typically evaluated with the
Wasserstein distance [27]. However, it is not clear how often
the DNN models need to be retrained using new ground-truth
data; it would be inconvenient, or even feasible, to train these

models often, as such training may take hours to complete.

III. A TALE OF TWO SIMULATORS
A. Openings

Complexity. In his article [28] titled “A Plea for Lean
Software,” Niklaus Wirth made the claim that “software’s girth
has surpassed its functionality,” and that such complexity was
due to software’s monolithic design, in that all features are
available all the time. We are of the opinion that current
DES frameworks, such as ns-3 [9] and OmNeT++ [L1]], are
too complex to use, to extend, and more importantly, to
become performant at scale. If we use lines of code (LOC)
— not including examples and tests — as a crude measure
of complexity, while early frameworks such as REAL and ns-
1 both had 15K LOC, the latest release of OmNeT++ had
257K LOC, ns-2 had 286K LOC, and ns-3 had 551K LOC!
We advocate that one should get back to basics and, starting
from a process-based design, build each network element with
simplicity as a design principle. As Wirth proclaimed [28]:
“Ideally, only a basic system with essential facilities would be
offered, a system that would lend itself to various extensions.”

As a starting point, few programming languages are simpler
or more ubiquitous than Python. But does it offer suitable
language-level support for a process-based design? Coroutines,
which coexist in the same kernel thread and are cooperatively
scheduled, have been supported since Python 3.4, and the
async/await keywords have been supported since Python 3.5.
Alternatively, one can use generator iterators, as coroutines
and generator iterators are flip sides of the same coin: With a
generator iterator created by a generator function containing
yield calls, each yield temporarily suspends processing,
remembering the current execution state. When the generator
iterator resumes, it restarts execution where it left off [29],
just as a cooperatively scheduled coroutine would do.

The first DES framework we have designed for network
simulation, ns.py, uses the facility of generator functions in
Python to realize the process-based design. It is simple to
define generator functions, called run(), in network elements
in ns.py, as one needs to yield to other coroutines in two
cases only: waiting for an inbound packet, or for a timeout
before sending out the next outbound packet, as we illustrate

in Fig. [T{c). The following First-Come-First-Served (FCFS)
scheduler is even simpler, including only an infinite loop:

1 def run(self):

2 while True:

3 p = yield self.store.get ()

4 yield self.env.timeout (p.size x 8.0 / self.rate)
5 self.out.put (p)

At line 3, yield is used to suspend the execution of
this coroutine until a new packet can be retrieved from
the scheduler’s own store, which is a FCFS queue. After
execution resumes at line 4, the packet p is guaranteed to
be retrieved, and we only need to wait for a period of time,
which is the packet’s transmission delay, to send it out. We
use yield again for such waiting, suspending execution until
the globally shared simulation clock is advanced beyond the
specified timeout value. At that time, execution would resume
again, and we send it out to the next-hop network element,
defined as self.out, by calling its put() function.

All network elements implement put(), and the FCFS
scheduler is no exception:

def put (self, packet):
self.store.put (packet)

Of course, the actual FCFS scheduler implementation in
ns.py needs to implement more features, such as a FCFS
queue with a bounded buffer size. The logic, however, remains
the same and strikingly simple: when an upstream element
calls put(), the scheduler only needs to place it in its own
queue (when certain conditions are satisfied). The scheduler
executes this function, however, in its upstream element’s
coroutine, rather than its own run() coroutine. Calling the
put () function of another element, therefore, is just a simple
and ingenious mechanism to pass messages between corou-
tines by taking advantage of dynamic types — a Pythonic way
of writing code. To connect two network elements, only one
line of code is needed. For example, to connect an upstream
DRR scheduler with a downstream packet sink:

drr_scheduler.out = sink

Composability. As Python is a dynamically typed language,
types are only determined at runtime. ns.py takes advantage of
dynamic types to support a unique feature that more complex
network elements can be composed by connecting multiple
simpler elements, each of which can have no buffers at all.
For example, one may compose a fair output-queued packet
switch with a finite buffer size and a fair scheduler, such
as a DRR scheduler, simply by defining a FCFS scheduler
with a finite buffer size and a packet dropping strategy, and
connecting it to a downstream DRR scheduler with no buffer
at all — by specifying the option that zero_buffer < True.
The upstream element would also need to have the knowledge
that its downstream element has no buffers, by specifying
zero_downstream_buffer < True. Despite the fact that it
is deceptively simple to use this feature, its implementation
is non-trivial, and infeasible without using Python’s dynamic
types.

Simplicity. With the use of yield calls in generator func-
tions, our experience is that it becomes much simpler to extend
ns.py with a new network element, by implementing its run()

Category Network Elements

FCFS, DRR, WFQ, Static Priority, Virtual

Scheduling Clock

Packet dropping Tail drop, Random Early Detection

Distribution-based, trace-based, TCP Reno,

Traffic generation TCP CUBIC, BBRV3

Demultiplexing Flow Information Base, random, flow-based

Routing Random simple path, shortest path

Traffic shaping Token bucket, two-rate three-color token bucket

TABLE 1
ESSENTIAL NETWORK ELEMENTS SUPPORTED IN ns.py.

coroutine with a process-based design. Unlike event-based
designs, there are no event handlers to implement and no state
to keep track of after resuming execution. It is not unusual to
simply use an infinite loop as in our example, since the runtime
executor, env, only runs for a finite amount of simulation
time. Within the loop, one only needs to yield the CPU to
other coroutines until a future event — even the choice of this
keyword makes sense!

Through the lens of lines of code (LOC), a crude measure
of complexity, ns.py should be considered simpler than all
existing DES frameworks. It includes a curated collection of
essential network elements, shown in Table [l with only 3235
LOC. To implement a complete simulation with a FatTree
topology, only 54 LOC is necessary. With popular simulators
hovering at 200-500K LOC, this level of simplicity can
genuinely be called “lean software.”

B. Adjournment

With ns.py’s simplicity and ease of use, it is primed for
fast prototyping of new designs at relatively small network
scales. Yet, before v3.14, Python code runs single-threaded
due to the Global Interpreter Lock (GIL), and performance is
widely known to be lacking. As we concluded in Section
the main advantage of the process-based design is its ease
of achieving a higher degree of parallelism using multiple
threads and additional CPU cores: one only needs to launch
new coroutines. ns.py would not be able to enjoy such an
advantage as it is forced to be single-threaded by Python. We
are back to square one: would it be feasible to design a new
DES framework with the best of both worlds: performant with
the simplicity of a process-based design?

Let us revisit Conway’s abstraction of coroutines [18]]. In
OmNeT++, process-based design is supported using coroutines
with dedicated stacks [30]. With such stack-based coroutines,
context switches between different coroutines are inefficient
due to the presence of the local call stack. If coroutines could
be implemented without using stacks, the lack of runtime
efficiency would “vanish entirely,” as proclaimed by Weber et
al. [31]]. At the high level, such stackless coroutines advocate
that local data within a coroutine is best stored as fields in an
active instance of the coroutine, rather than in a stack frame.
Suspending execution in a stackless coroutine is, therefore,
mapped to an ordinary return statement, and context switches
become as fast as simple function calls.

While planning started initially in 2016 [32], stackless
coroutines were only officially supported in the stable Rust

programming language with the advent of async/await re-
cently [33]. The Rust compiler natively supports capturing
local fields and the program counter in the Future struc-
ture. Various runtime executors are supported by third-party
libraries, such as fokio [34], by “polling” lazy coroutines.
Dubbed zero-cost futures [33], there is zero runtime overhead:
a stackless coroutine in Rust is just a fancier way of creating
a finite state machine [35] — a hallmark of event-based
simulation!

Stackless coroutines aside, Rust enjoys many other advan-
tages as a modern programming language, such as zero-cost
abstraction, memory safety, as well as conservative ownership
rules enforced by the compiler. With Rust, it is guaranteed
that there will not be any data races across multiple threads,
each corresponding to a CPU core and accommodating a
large number of coroutines. Needless to say, as we set out
to design and build Days, our new, simple and performant
DES framework, Rust is our natural choice.

Unfortunately, though they have been planned for a future
release, Rust does not yet support generator functions as
Python does. This makes it unlikely to directly migrate our
design and implementation from ns.py to Days. To start from
the ground up, we selected tokio [34], a well-maintained multi-
threaded executor in Rust, as our executor of choice. As tokio
is primarily designed for networking 1/O, it is not only multi-
threaded — each hosting a large number of coroutines —
by default, but also supports common thread synchronization
primitives such as a semaphore [36], which maintains a set
of permits that are used to synchronize access to a shared
resource. In addition, it provides excellent support for highly
performant channels [37]; messages can easily be passed be-
tween coroutines with tokio’s multi-producer, single-consumer
(MPSC) channels, which are able to buffer an unbounded
number of messages for future delivery.

In network simulation, there are only two cases in which
the simulation clock may need to be advanced: @ when a
coroutine is waiting to receive a message from its MPSC
channel; and (2) when it needs to time out for a period of
simulation time by going to sleep. But when do we advance
the simulation clock? The key insight is that the simulation
clock should only be advanced when the simulation reaches
a state of quiescence and no coroutines are active; i.e., they
are all blocked waiting for a message or a timeout. This is
fundamentally a deadlock across coroutines, which is to be
avoided at all costs in a conventional multi-threaded executor
such as tokio.

With such a conundrum between the need to avoid or to
seek a deadlock, we argue that it is still feasible to simulate
discrete events using rokio, a conventional executor. Fig. [J[(a)
illustrates how we use a globally shared trio, involving a binary
heap sorted by wake-up time, the current simulation time, and
a single semaphore, to advance the simulation clock correctly.
The binary heap keeps track of a collection of (sender, wake-up
time) tuples, sorted by wake-up times. The number of available
permits in the semaphore is used to keep track of the number
of live coroutines; only when it is reduced to zero should we
advance the simulation clock to the minimum wake-up time
popped from the binary heap. We check if the simulation clock

Semaphore Coroutine with the Mailbox Model

Coroutine
)

A-
.
a7

Qem\\v E

(Binarvhean)

Binary heap ||+

Pop an element '

and advance || #1 (sender, time) || |

simulation clock '
! =\ H

push (sender, N)

wake-up time) 1 | packet from

-/ i | other coroutines

loop forward to

other coroutine

reovt) 08 runt) Qefoend (=

%

output }— J

| mailbox }» .

no permit?

timeout()

.

[Conventional multi-threaded executor } ' [Custom multi-threaded executor for DES on\y]

(a) Failed first cut design using a globally
shared binary heap and semaphore.

(b) Days with the mailbox model and
its custom multi-threaded executor.

Fig. 2. (a) A failed first cut design. (b) Days with the mailbox model and
its custom multi-threaded executor.

should be advanced whenever a coroutine blocks itself, either
to receive a packet or to time out.

In our first-cut design, the simulation clock is only advanced
when the number of available permits is 0, which implies that
no coroutines are currently alive and running, and a state
of deadlock has been reached. When the simulation clock
is advanced, it is advanced to the next wake-up time of the
nearest coroutine in time, decided by popping an event from
the binary heap.

The binary heap includes a collection of (sender, wake-up
time) tuples, sorted by their wake-up times. Each entry in the
binary heap is pushed right before a coroutine attempts to
time out, and to sleep until a specific wake-up time is reached.
When this occurs, a coroutine would create a one-shot channel
using fokio (our runtime executor), and store the sender of the
channel as the first element of the tuple to be pushed onto the
binary heap.

There are two occasions when a coroutine goes to sleep:
(1) when it needs to receive a packet, arriving from other
coroutines via an MPSC channel; and @ when it times out
waiting for a specific wake-up time in the future. In both
occasions, the coroutine would need to acquire a permit from
the globally shared semaphore before going to sleep, and
release the permit back to the semaphore after waking up.
When a coroutine is initialized, it adds a new permit to the
semaphore; and when it is terminated, it permanently removes
one permit. This way, the number of available permits in the
semaphore will accurately reflect coroutines that are currently
alive.

Performance. Much to our dismay, despite the fact that
it has access to multiple CPU cores, our first-cut design
underperformed ns.py by 6x in a FatTree-4 topology with
8 flows, achieving a mean running time of 1.898 seconds and
a Standard Error of Mean (SEM) of 0.004 over 5 runs, as
compared to 0.32 seconds (SEM 0.005) with ns.py, as well
as an abysmal CPU utilization of only 10.3%. This is due
to the fact that it spent the vast majority of its time waiting
for the globally shared context, to access the binary heap,
the semaphore, and the simulation clock. Since coroutines are
typically very simple in their logic in network simulations — a
FCFS scheduler only needs to dequeue a packet and send it out
— as the number of coroutines scales up, the time competing
for shared states would play an overwhelming role. Though the
first cut failed, our efforts were far from futile: we understood

that to maximize parallelism, the fundamental challenge is to
share as little state as possible, as we advance the simulation
clock only when a deadlock among coroutines emerges and a
state of quiescence is reached.

C. Fork

Mailbox model and custom executor. Now that we are
back to square one, the only remaining alternative is to build
our own custom multi-threaded executor, with the sole purpose
of supporting discrete-event network simulations. This is also
an excellent opportunity to revisit our concurrent programming
abstraction to realize process-based simulation: how, after all,
should coroutines run and interact with one another in a simple
and performant way?

We decided that the process-based design should be best
implemented with what we refer to as the mailbox model,
where each coroutine still maintains its own states during
its execution, but only interacts with the external world via
our new custom multi-threaded executor using a mailbox.
With the mailbox model, each network element is an isolated
coroutine with one mailbox and an arbitrary number of outputs
connecting to other network elements. Our custom executor
supports an Application Programming Interface (API) that
allows a coroutine to be initialized with a new mailbox, to
connect its output to public interfaces — such as recv() for
inbound packets — in other coroutines via their mailboxes,
and to schedule a timeout with a callback when it is reached.
All possible performance optimizations are to be implemented
within the executor, and the entire network topology is built
upon its launch.

As we illustrate in Fig. 2{b), when a packet arrives at a
network element, its recv() processes it by forwarding to
another element or enqueuing it locally, and then calls run() if
needed. In run(), we call our custom executor’s schedule()
to send out the packet to the coroutine’s output at a later
time, and the output is connected to a downstream network
element during initialization. To implement run(), we may
use a loop or, alternatively, schedule to call itself recursively
after a timeout.

Under the hood, rather than exposing the binary heap for
blocked coroutines and the simulation clock for global sharing,
the custom multi-threaded executor is now responsible for
maintaining these states locally in its own dedicated thread.
The packets exchanged between network elements are im-
plemented as async closures in Rust, which are forwarded
by the custom executor via an asynchronous and bounded
MPSC channel. Whenever all coroutines complete their local
computations and a deadlock is reached, the custom executor
is responsible for advancing the simulation clock, by managing
its own priority queue containing all future events. It incor-
porates many performance optimizations, including a work-
stealing strategy similar to that of fokio, which balances the
workload across CPU cores. Days also supports a single-
threaded executor to eliminate most runtime overhead related
to mutex locks when multiple threads contend for shared
states, which is useful when running less complex simulations.

Simplicity. As shown in Fig. [2{b), Days’ mailbox model
is simple, as all performance-optimized machinery has been

Category Network Elements

Topologies FatTree, 2D and 3D Torus, custom

FCFS, DRR, WRR, Static Priority, WFQ, Vir-

Scheduling tual Clock

Packet processing ECN, Tail Drop, Random Early Detection

Distribution, TCP Reno, TCP CUBIC, DC-

Traffic generation QCN, BBRY3

Demultiplexing Flow Information Base

Routing Random simple path, shortest path, ECMP

Link Layer Priority-based Flow Control

TABLE I
ESSENTIAL NETWORK ELEMENTS SUPPORTED IN Days.

moved into the custom multi-threaded executor itself. As no
states are shared between network elements, there is no fear
for data races, and no need for either mutual exclusion locks
or atomic reference counting. From the perspective of users,
Days is fully configurable using toml configuration files.
Despite its simplicity, Days’ mailbox model is versatile as
well, as we are able to incorporate essential network elements
shown in Table [II} including complex scheduling disciplines
such as Weighted Fair Queueing (WFQ) [26], as well as
several congestion control variants (such as TCP CUBIC [38]],
BBRv3 [39], and DCQCN [40]). While the custom executor
consists of 13244 LOC (a heavily customized fork from
NeXosim [41]), Days itself is built with only 8375 LOC —
or 157K tokens, fitting comfortably into the context window
of most frontier models.

Lean software. A further design choice that contributes
to Days’ efficiency is that selected protocols have been im-
plemented behind compile-time feature gates in Rust. Proto-
cols such as explicit congestion notification (ECN) [42] and
priority-based flow control (PFC) [43] are fairly complex and
implemented across several network elements; experiments
that do not require them should not need to pay a price
at runtime. By excluding them entirely from the compiled
binary by default, this design preserves conceptual economy:
the default build exposes only a basic set of essential elements,
while specialized mechanisms are introduced explicitly when
needed. Days enforces a strict “pay-for-what-you-use” cost
model: when a protocol is disabled, its code paths are not
merely bypassed at runtime but are absent at compile time, so
it incurs no additional branches or state maintenance.

D. End Game

In large-scale simulation runs, Days may progress through
hundreds of thousands of distinct timestamps where the global
simulation clock advances. Each such timestamp — a “step”
— induces a recurring sequence of runtime operations: ex-
tracting the next set of events at the minimum deadline,
materializing the corresponding task groups, executing them
to quiescence as a deadlock is reached, and repeating. When
step counts are high, even modest per-step overhead becomes a
dominant term in wall-clock time. To further improve Days’
performance, we therefore concentrated on reducing (1) the
number of actions that interact with globally shared states, @
the number of times such interactions require synchronization,
and @ the number of steps for which the full quiescence
barrier must be paid.

Minimizing contention for globally shared states. There
are only two actions in a network element that may contend for
globally shared states: @ reading the global simulation clock,
and @ scheduling events for future execution in a shared
global event queue. To minimize the number of reads from
the global simulation clock, each read should be saved and
shared between network elements as much as possible. Since
packets are always forwarded between network elements, they
are excellent vehicles for carrying the current simulation time:
once a read is saved by an upstream element, its downstream
counterpart can extract the current simulation time directly
from a received packet, rather than from the global simulation
clock.

To minimize contention for the global event queue, we
attempt to fuse the scheduling of multiple events into a single
request as much as possible. In a packet scheduler, for exam-
ple, each packet is forwarded by scheduling two immediately
consecutive events after a timeout: one to transmit a packet,
another to run a new iteration of the scheduling discipline. In
Days, we not only fuse these consecutive actions into a single
scheduling request, but also attempt to fuse the scheduling of
a batch of packets into a single request. Operationally, some
network elements, such as FIFO schedulers, can compute a
bounded lookahead window of departures and submit that
window as a batch. In the same spirit as data-oriented de-
sign [14], this strategy preserves packet-level behavior while
substantially reducing the frequency of synchronization for
inserting into the global event queue.

Local event buffers with deterministic flushing. Bulk
insertion reduces the number of global queue lock acquisitions;
but concurrent worker threads in the executor may still produce
scheduled events at high rates. Days’ design incorporates
per-worker local event buffers: Rather than inserting every
newly produced event immediately into the global event queue,
workers append events to local buffers, which are flushed at
step boundaries when the executor reaches a deadlock and is
quiescent. With this design, most scheduling activity remains
local during a step, minimizing global lock traffic while
the deterministic ordering for same-timestamp events is still
preserved. Equally important, the flushing rule is semantic:
local event buffers are drained only when no model tasks
are executing, aligning with the correctness requirements of
conservative parallel discrete-event simulation, where global
progress is coordinated at well-defined boundaries [12], [44]].

Time quantization. When the number of distinct times-
tamps is excessively large, the quiescence barrier is paid
too frequently. To reduce the total number of steps taken,
timestamps can be quantized in Days when the executor
schedules actions to take place next. With time quantiza-
tion, event deadlines are snapped to a grid. This coalesces
near-identical deadlines that arise from floating-point drift,
accumulated rounding error, or fine-grained pacing timers,
thereby increasing the number of actions executed per step and
improving data parallelism in a similar vein as data-oriented
design [14]. When opted in for a potential performance boost,
the granularity of time quantization — which may affect
simulation accuracy — can also be configured and threaded
through topology construction.

Keeping threads warm across step boundaries. Reducing
the number of steps mitigates the number of barriers; the
barrier itself must also be efficient. A substantial component of
barrier cost in Days’ multi-threaded executor is the repeated
transition of workers into and out of OS-level sleep states.
In workloads with many short steps, frequent sleep/wake-
up transitions can dominate execution time. Days therefore
implements a warm-pool policy with several complementary
mechanisms: @ At the start of each run, the executor proac-
tively wakes up several “hot” worker threads, ready to run
tasks. (2) Before sleeping, the main thread briefly spins to
avoid a full sleep transition when new work is likely to arrive
imminently. @ On worker threads, a linger-then-sleep strategy
keeps a designated subset of workers in a standby state for a
short interval. If the next step begins promptly, workers can
resume without a wake-up. Overall, Days’ warm-pool policy
reduces the overhead of reactivation across adjacent steps.

IV. PERFORMANCE EVALUATION

While Days is a natural choice when performance is needed,
ns.py may very well stand on its own when we wish to rapidly
prototype the design of new protocols at smaller network
scales. We now evaluate the performance and scalability
of both frameworks, in comparison with the state-of-the-art
in both discrete-event simulation and network performance
estimation tools.

Baseline benchmarks. As initial baseline benchmarks, we
choose FatTree topologies configured with FCFS schedulers,
which were widely used in the literature [14], [15], [L7]. Each
flow in our evaluation sends 1500 packets of 1000 bytes in
size. In this context, we use the following four benchmarks
for our comparisons: @ FatTree-4 (i.e., k = 4) and 8 flows;
@ FatTree-8 (kK = 8) and 64 flows; @ FatTree-16 (k = 16
and 512 flows; and @ FatTree-32 (k = 32) and 4096 ﬁow
We carried out our experiments on a consumer-grade server
with Intel i7-13700K (16 CPU cores), 128 GB of physical
memory, and an NVIDIA GeForce RTX 4090. We used ns-3
3.40 and OmNeT++ 4.5; ns.py’s runs used Python 3.13. Each
experiment involved 5 runs, with the mean and SEM shown
in Fig. 3] Due to substantial performance differences across-
the-board, the running time on the y-axis uses a logarithmic
scale.

The scale of the first two benchmarks is relatively small,
which serves as a fitting starting point. Despite their com-
plexity and numerous claims to the contrary (e.g., [14], [L5],
[L7]), ns-3 and OmNeT++ performed surprisingly well, after
we spent a considerable amount of time fine-tuning their
implementations for fair comparisons. Rather than over two
hours for a FatTree-4 topology as claimed in the literature [17],
OmNeT++ took only 1.91 seconds in our first benchmark.
Rather than a 3x speedup claimed in [[14], DONS performed

2We chose these benchmark configurations because they were the ones
that DONS can work with. It turned out that, though its source code has been
publicly available, DONS’ authors confirmed that the executable compiled
from its source code failed to run. For this reason, we had to run the provided
pre-compiled executable, which only supported these baseline benchmarks. All
benchmarking configurations in ns.py and Days have been made available
as open source for more reproducible research.

slightly worse than both ns-3 and OmNeT++. Surprisingly,
despite the performance penalty imposed by Python, ns.py
outperformed both ns-3 and OmNeT++ in the FatTree-4 topol-
ogy, and outperformed DONS with a 12x speedup.

[Dk=4,8flows [1k=8,64flows []k=16,512flows [k =32, 4096 flows

10000 [70m30.1s
over an hour
—
7))
2
° 296.4 5m55s
(%]
3 100
-
Py 25 27.0 227 205 2565
£ |
- [577 [5.24 6.55—
'; { 2.94
’_4 1.55 g 1.64
g 1 =
£ 2.08 1.79 1.91 288 D B J
T 0.24 030 033
0.09
0.03
ns-3 P-ns-3 OmNeT++ DONS ns.py Days (ST) Days (MT)

DES Frameworks

Fig. 3. ns.py outperformed all existing DES frameworks in baseline bench-
marks, including DONS. Packing even more performance, Days outperformed
ns.py by up to 55X, and outperformed DONS by 32x, 17x, 14X, and
1574 x in these baseline benchmarks, respectively.

When we moved to the FatTree-8 topology, ns-3 with a
single process — as well as OmNeT++ — started to slow
down quite substantially, but its parallelized counterpart, with
9 logical processes running on 9 different CPU cores and
communicating with one another using the Message Passing
Interface (MPI), performed admirably well, almost offering a
linear speedup. Our results again diverged from experimental
results reported in the literature [14]. DONS, while having
the opportunity to use all our 16 CPU cores, outperformed
parallelized ns-3 slightly, but its performance was a far cry
from a speedup of 3x over parallelized ns-3 as it originally
claimed [14]. ns.py, while running with only one thread on a
single CPU core, was 15x faster than OmNeT++ and 3.4x
faster than DONS. In the FatTree-16 benchmark, ns.py was
marginally faster than DONS; and interestingly, neither vanilla
nor parallel ns-3 were scalable at all: they both took over an
hour before we terminated the jobs.

We now turn to Days, and show its performance with both
single-threaded (ST) and multi-threaded (MT) executors. In
the case of FatTree-4, while the previously fastest framework,
ns.py, took 0.32 seconds, Days (ST) took only 0.03 seconds,
representing a speedup of 96x over DONS. In the case of
FatTree-8 and FatTree-16, Days (ST) outperformed ns.py by
5x and 7x, respectively; it also achieved a speedup of 17x
and 8x over DONS, respectively, and a speedup of 100x
over OmNeT++ with FatTree-16. But with FatTree-16, the true
winner is Days (MT), achieving a 1.8x speedup over Days
(ST), and a 14x speedup over DONS.

Finally, with the FatTree-32 topology and 4096 flows, we
only evaluated DONS and ns.py against Days, as it was
not feasible to wait for the other contestants. This was a
benchmark where Days (MT) excelled: a 55x speedup over
ns.py, and a 1574x speedup over DONS — we double-
checked our configurations and they were indeed this fast! Our
performance optimizations on Days’ multi-threaded executor
have also catapulted it to a significant 4x speedup over the

Days

Benchmark | MimicNet ns.py qT Days MT
FatTree-4, 9.46s (£ | 0.24s (£ | 0.03s (= | 0.09s (&£
8 flows 0.11s) 0.005s) 0.0006s) 0.0024s)
FatTree-8, 2332s (£ | 1.55s (= | 0.30s (£ | 033s (£
64 flows 0.27s) 0.02s) 0.011s) 0.002s)
FatTree-16, | 567.5s (£ | 20.3s (£ | 2.94s (+ | 1.64s (&
512 flows 2.50s) 0.10s) 0.119s) 0.026s)
TABLE III

NOT INCLUDING THE TRAINING TIME, MIMICNET IS STILL NOT
COMPETITIVE AGAINST ns.py AND Days.

single-threaded executor. Suffice it to say, Days was fast.

Network performance estimation. We then turned our
attention to recent tools for network performance estimation
— MimicNet [15] and DeepQueueNet [17] — by running
their vanilla source code without modifications. It turns out
that the source code for DeepQueueNet only supports the
FatTree-4 topology; and with 5 test runs, the mean running
time we measured was 174.63 seconds, with an SEM of
2.66 seconds. This was substantially slower than all DES
frameworks. Granted, the single NVIDIA GPU on our server
did not satisfy its 4-GPU hardware requirement, and inference
was performed on the CPUs. Still, even with the benefit of 4
GPUs, the performance of our frameworks, at 0.24, 0.03, and
0.09 seconds, may still be quite competitive.

The source code of MimicNet [15] can indeed support
all three benchmarks, and we again carried out 5 test runs
each, using CPU cores to perform both training and inference,
as the CUDA version supported by MimicNet no longer
supports current-generation NVIDIA GPUs. As we show in
Table [[II} it was not competitive in performance, which is
the primary motivation for designing network performance
estimators. Even ns.py outperformed MimicNet by 20X, not
to mention Days. In addition, our MimicNet results did not
include the time needed for training, which took an average
of 211 minutes and 24.3 seconds for the FatTree-16 topology.

Scaling up the number of flows. Now that ns.py and
Days have both outperformed existing DES frameworks and
performance estimators, we continue with a more in-depth
analysis on their scalability with respect to the number of flows
in a FatTree-32 topology. Flows in each simulation ran for 10
seconds, produced traffic at 10 Mbps, and used TCP CUBIC
as their congestion control protocol. The link capacities were
set as 100 Mbps. The running time on the y-axis, again,
uses a logarithmic scale. As Fig. d(a)| shows, ns.py’s running
times increased exponentially with the exponential increase
in the number of flows simulated; the line graph is almost
linear when plotted using the logarithmic scale. This shows
that the runtime overhead was relatively fixed, in that no
extra workload was performed per flow as more flows were
simulated. In contrast, Days ST and Days MT were much
more performant — both overall and on a per-flow basis —
as the number of flows scales up. In particular, exactly as we
expected due to its multi-threaded executor, Days MT craved
more workload, and was able to catch up with its single-
threaded sibling as the number of flows reached beyond 64. At
these larger scales, the speedup offered by parallelism caught
up with the synchronization overhead. It is also worth noting

® nspy @ Days(ST) @ Days (MT) ® Days (ST) @ Days (MT)

[JDays (both ST and MT)

\08646f

AN\

N
\

I\

60000 r

1000 " 1

I
T

3
I

40000 r

[}

gy
7 \
]
7

28352 L
P

o
~

20000 r

\\ >

Running Time (seconds)
)
L\
T
\
Running Time (seconds)
S
I

X7

~

¢

o

Maximum Resident Set Size (MB)

8633 _|
3570
o 5(‘).4 69‘.8 88.6 15‘1.7 10‘91 || ‘

16 32 64 128 256 512 1024 16 32

Number of Flows

(a) Varying the numbers of flows in FatTree-32.

Fig. 4. Performance of ns.py, Days (ST) and Days (MT) at scale.

[Days (ST)

20.9

20

16.7 16.7 16.7 16.7

4.60

Running Time (seconds)

3.32

: O

Days (MT)
with Local Time

with Batch Event Scheduling with Time Quantization
and Local Event Buffers

Performance Optimization Strategy

with All Optimizations

Fig. 5. Optimizing the performance of Days’ multi-threading: how various
strategies helped.

that with fewer than 64 flows, both Days (ST) and Days
(MT) took less than 10 seconds to finish a simulation with a
10-second duration in simulated time!

Scaling up the size of the topology. In a similar vein,
we wish to evaluate scalability with respect to the size of
the network topology, moving from a FatTree-4 topology up,
through FatTree-64 (the largest ever tested in the literature)
all the way to FatTree-256 (with 4,194,304 hosts and 81,920
switches). Our results — with ns.py excluded as it was
unable to accommodate some of these scales — are shown
in Fig. A(b)l with 128 flows simulated, link capacities of 100
Mbps, and TCP CUBIC for congestion control. It was evident
that both Days (ST) and Days (MT) scaled well all the way
up to FatTree-256; Days (ST) was faster at smaller scales, but
was outperformed by Days (MT) beyond FatTree-16. Since
shortest paths between hosts were of similar lengths as the
topology scales up, the running times remained steady.

Peak memory footprint. As we show in Fig. Days
(both ST and MT) offered excellent efficiency regarding its
peak memory footprint, as measured by the maximum resident
set size (RSS) (obtained with /usr/bin/time -v), as the
network scales up from FatTree-4 to FatTree-256 using the
same experimental settings as Fig. For example, Days
consumed only 2.96 GB with FatTree-96 and 8.43 GB with
FatTree-128. This level of memory footprint can be easily
accommodated by modern consumer-grade computers.

Performance optimizations. Finally, we show how our
performance optimization strategies helped Days (MT) out-

Size of the FatTree Topology

(b) Scaling up the topologies with 128 flows.

|
64 96 128 192 256 4 8 16 32 64 96 128 192 256

Size of the FatTree Topology

(c) Memory footprint as topologies scale up.

perform its single-threaded counterpart. Fig. [5] shows the
running times of a simulation using a FatTree-96 topology
with 512 flows. With locally maintained simulation times
using packets — which reduced contention for the global
simulation clock — Days (MT) was about 40% slower than
Days (ST). By adding batch event scheduling and local event
buffers, contention for the global event queue was reduced,
improving the performance by 11%; but it was still 25% slower
than Days (ST). It was the addition of time quantization
that substantially helped multi-threading performance, as more
parallelism can be achieved by snapping timestamps to a grid;
yet such a performance gain comes with a (controllable) loss
of simulation accuracy. Ultimately, when everything is said
and done — including warm threads across step boundaries
— Days (MT) is 5x faster than Days (ST), a feat not to be
dismissed lightly.

V. CONCLUDING REMARKS

This paper reflects five years’ worth of research towards
building simpler and more performant discrete-event network
simulation frameworks, as we roll back to the basics and
revisit every design decision. When we penned and committed
the first line of code five years ago, we never imagined
such handsome payoffs — brought to us by a more intuitive,
decades-old process-based design, as well as modern advances
in concurrent programming, with generator functions, runtime
executors, stackless coroutines, and fearless concurrency of-
fered by Rust, all ushered in by the recent desire of building
highly performant cloud services.

While we are pleasantly impressed by the raw performance
of both ns.py and Days as they outperformed all existing DES
frameworks and network performance estimation tools by at
least an order of magnitude, the highlight of this work lies in
its inherent simplicity, by paring decades of work down to the
bare essentials, and then building them back up. We are true
believers that lean software is easier to use and to extend, and
with 3235 LOC in ns.py and 8375 LOC in Days, we argue
that the foundation for discrete-event network simulation is
no exception. Though these frameworks are still in their early
days and new network elements will be added brick by brick,
with a refreshingly simple and highly performant foundation,
the bright days of discrete-event network simulation are yet to
come.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

x.ai, “Announcing Grok,” https://x.ai/, Nov. 2023.

J. Pezzone, “Zuckerberg and Meta set to purchase 350,000 Nvidia
H100 GPUs by the end of 2024, https://www.techspot.com/news/
101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html,
Jan. 2024.

‘W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated
Systems for Large-model Training at Scale,” in Proc. IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 283-294.

A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “TACCL: Guiding
Collective Algorithm Synthesis using Communication Sketches,” in
Proc. 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). USENIX, 2023, pp. 593-612.

A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, “NEST: A Network
Simulation and Prototyping Testbed,” Commun. ACM, vol. 33, no. 10,
p. 63-74, Oct. 1990.

S. Keshav, “REAL: A Network Simulator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/CSD-88-472,
Dec. 1988. [Online]. Available: https://www?2.eecs.berkeley.edu/Pubs/
TechRpts/1988/CSD-88-472.pdf]

S. McCanne, S. Floyd, and K. Fall, “ns version 1: LBNL Network
Simulator,” https://ee.lbl.gov/ns/, 1995.

T. Issariyakul and E. Hossain, “Introduction to Network Simulator 2
(NS2),” in Introduction to Network Simulator 2 (NS2). Springer, 2009,
pp. 1-18.

G. E Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15—
34.

Z. Lu and H. Yang, Unlocking the Power of OPNET Modeler.
bridge University Press, 2012.

A. Varga, “A Practical Introduction to the OMNeT++ Simulation Frame-
work,” in Recent Advances in Network Simulation: The OMNeT++
Environment and its Ecosystem. Springer International Publishing,
2019, pp. 3-51.

K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation via
a Sequence of Parallel Computations,” Commun. ACM, vol. 24, no. 4,
p. 198-206, Apr. 1981.

D. R. Jefferson, “Virtual Time,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 3, p. 404425, Jul. 1985.

K. Gao, L. Chen, D. Li, V. Liu, X. Wang, R. Zhang, and L. Lu, “DONS:
Fast and Affordable Discrete Event Network Simulation with Automatic
Parallelization,” in Proc. ACM SIGCOMM 2023 Conference. ~ACM,
2023, p. 167-181.

Q. Zhang, K. K. W. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu,
“MimicNet: Fast Performance Estimates for Data Center Networks with
Machine Learning,” in Proc. ACM SIGCOMM 2021 Conference. ACM,
2021, p. 287-304.

K. Rusek, J. Sudrez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260-2270, 2020.

Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li, and
G. Zhang, “DeepQueueNet: Towards Scalable and Generalized Network
Performance Estimation with Packet-level Visibility,” in Proc. ACM
SIGCOMM 2022 Conference. ACM, 2022, p. 441-457.

M. E. Conway, “Design of a Separable Transition-diagram Compiler,”
Commun. ACM, vol. 6, no. 7, p. 396-408, Jul. 1963.

O.-J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA 67. Common
Base Language, ser. Report at the Norwegian Computing Center (743).
Report at the Norwegian Computing Center, 1984.

Wikipedia, “Actor Model,” https://en.wikipedia.org/wiki/Actor_model,
Jan. 2022.

C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR
Formalism for Artificial Intelligence,” in Proc. the 3rd International
Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann
Publishers Inc., 1973, p. 235-245.

K. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs,” IEEE Transactions
on Software Engineering, vol. SE-5, no. 5, pp. 440452, 1979.

G. Lomow and B. Unger, “The Process View of Simulation in Ada,” in
Proc. 14th Winter Simulation Conference (WSC), 1982, p. 77-86.

Cam-

[24]

[25]

[26]

(27
[28]
[29]
[30]

(31]

(32]

(33]
[34]
[35]
[36]
(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit
Round-Robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375-385, 1996.

J. D. Bayliss, “The Data-Oriented Design Process for Game Develop-
ment,” Computer, vol. 55, no. 05, pp. 31-38, May 2022.

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm,” in Proc. ACM SIGCOMM. ACM, 1989, pp.
1-12.

A. Frohmader and H. Volkmer, “1-Wasserstein Distance on the Standard
Simplex,” Algebraic Statistics, vol. 12, no. 1, pp. 43-56, 2021.

N. Wirth, “A Plea for Lean Software,” Computer, vol. 28, no. 2, pp.
64-68, Feb. 1995.

A. M. Kuchling, “Functional Programming HOWTO,” https://docs.
python.org/3/howto/functional.html, Jan. 2024.

“OMNeT++ Simulation Manual — Activity,” https://doc.omnetpp.org/
omnetpp/manual/#sec:simple-modules:activity, Jan. 2024.

D. Weber and J. Fischer, “Process-Based Simulation with Stackless
Coroutines,” in Proc. 12th System Analysis and Modelling Conference.
ACM, 2020, p. 84-93.

“Official Support for a New Coroutine Run-
time in Rust,” https://internals.rust-lang.org/t/
official-support-for-a-new-coroutine-runtime-in-rust/3612, Mar. 2019.
N. Matsakis, “Async-await on Stable Rust!” https://blog.rust-lang.org/
2019/11/07/Async-await-stable.html, Nov. 2019.

Tokio, “Tokio: Build Reliable Network Applications without Compro-
mising Speed.” https://tokio.rs/, Jan. 2024.

S. Sartor, “Generalizing Coroutines in Rust ,” https://samsartor.com/
coroutines- 1/, Nov. 2019.

Tokio, “Tokio: Semaphore,” https://docs.rs/tokio/latest/tokio/sync/struct.
Semaphore.html, Jan. 2024.

——, “Tokio: Channels Tutorial,” https://tokio.rs/tokio/tutorial/channels,
Jan. 2024.

S. Ha, L. Rhee, and L. Xu, “CUBIC: a New TCP-friendly High-speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64-74, Jul.
2008.

N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, p. 20-53, Oct. 2016.

Y. Zhu, D. Firestone, C. Guo, J. Padhye, S. Raindel, M. Zhang, Y. Liron,
H. Eran, M. H. Yahia, and M. Lipshteyn, “Congestion Control for
Large-Scale RDMA Deployments,” in Proc. ACM SIGCOMM 2015
Conference. ACM, 2015, p. 523-536.

S. Barral, “NeXosim: A High-Performance, Discrete-Event Computa-
tion Framework for System Simulation,” https://docs.rs/nexosim/latest/
nexosim/, 2025.

K. K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” https://www.rfc-editor.org/rfc/
rfc3168, Sep. 2001.

“IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment: Priority-based Flow Con-
trol,” IEEE Std 802.1Qbb-2011, 2011.

R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,
vol. 33, no. 10, p. 30-53, Oct. 1990.

https://x.ai/
https://www.techspot.com/news/101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html
https://www.techspot.com/news/101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-472.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-472.pdf
https://ee.lbl.gov/ns/
https://en.wikipedia.org/wiki/Actor_model
https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html
https://doc.omnetpp.org/omnetpp/manual/#sec:simple-modules:activity
https://doc.omnetpp.org/omnetpp/manual/#sec:simple-modules:activity
https://internals.rust-lang.org/t/official-support-for-a-new-coroutine-runtime-in-rust/3612
https://internals.rust-lang.org/t/official-support-for-a-new-coroutine-runtime-in-rust/3612
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://tokio.rs/
https://samsartor.com/coroutines-1/
https://samsartor.com/coroutines-1/
https://docs.rs/tokio/latest/tokio/sync/struct.Semaphore.html
https://docs.rs/tokio/latest/tokio/sync/struct.Semaphore.html
https://tokio.rs/tokio/tutorial/channels
https://docs.rs/nexosim/latest/nexosim/
https://docs.rs/nexosim/latest/nexosim/
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc3168

	Introduction
	Motivation and Related Work
	A Tale of Two Simulators
	Openings
	Adjournment
	Fork
	End Game

	Performance Evaluation
	Concluding Remarks
	References

