
Days: Discrete-Event Network

Simulation on Steroids
Baochun Li

Department of Electrical and Computer Engineering

University of Toronto

Abstract—As large foundation models are routinely trained
with hundreds of thousands of GPU compute nodes, the need for
simulating a computer network at scale has become more critical
and relevant than ever. Without a doubt, packet-level discrete-
event simulation (DES) offers the finest granularity, and thus
the highest accuracy. Unfortunately, conventional discrete-event
simulators were widely known to be slow, and thus unable to
accommodate the scale of modern networks. Recent work in the
literature attempted to estimate the performance of large-scale
networks using deep neural network models, but such estimation
inevitably leads to a loss of packet-level accuracy, when compared
to the ground truth from discrete-event simulators.

But is it really the case that discrete-event simulators are
not performant at scale? In this paper, we advocate that a
process-based design is a simpler, more scalable, and performant
choice than the current event-based design. We challenge the
conventional wisdom that discrete-event simulators lack scalabil-
ity, and progressively introduce the design and implementation
of two new DES frameworks, ns.py and Days, built using Python
and Rust, and with modern development advances in gen-
erators, asynchronous programming, and stackless coroutines.
Our new simulation frameworks are designed to be lean and
performant, outperforming existing discrete-event simulators and
performance estimators by up to three orders of magnitude.

I. INTRODUCTION

As serverless web services span multiple geographically

distributed regions and large foundation models are trained

with tens of thousands of GPU compute nodes [1], [2],

there is a pressing need for evaluating new network proto-

cols and resource scheduling mechanisms at scale in modern

communication networks [3], [4]. For four decades, discrete-

event simulation (DES) frameworks [5], [6], [7], [8], [9],

[10], [11] have offered the best possible accuracy and the

finest granularity, as they kept track of every packet traveling

through modern networks that we wish to study. However, it

has been widely accepted common knowledge that existing

DES frameworks were slow, and failed to offer acceptable

performance at the scale of modern networks. In contrast, from

the perspective of raw computing power, we have witnessed

speed improvements over four decades by a few orders of

magnitude, made possible by advances in both single-core

performance and multi-core architectures.

In the literature, there have been two pathways to improve

DES performance: parallel discrete-event simulation (PDES)

and network performance estimation. It has been shown since

four decades ago that one can use a conservative [12] or an op-

timistic protocol [13] to parallelize discrete-event simulation.

Despite claims to the contrary in the recent literature [14], [15],

these parallelization strategies from decades ago were quite ef-

fective in our experience. More recently, network performance

estimation at the packet level, represented by RouteNet [16],

MimicNet [15], and DeepQueueNet [17], became the de facto

alternative to discrete-event simulation.

But why are existing DES frameworks so slow? As they

were consistently implemented with high-performance pro-

gramming languages — NEST [5] and REAL [6] used C

and all modern DES frameworks used C++ — it can be

intuitively concluded that their lack of performance at scale

was due to the inherent design of discrete-event simulation in

general. Conceptually, however, discrete-event simulation is

rather simple: the simulated network only changes its state at

discrete points in simulation time, and migrates from one state

to another upon the occurrence of an event. Therefore, modern

DES frameworks for network simulation, including ns-3 [9],

OPNET [10], and OmNeT++ [11], were all built based on the

design involving an event queue and a scheduler: the event

queue holds all unprocessed future events in their timestamp

order, and the scheduler simply processes events in the event

queue in order. As each event is processed, more events may

be produced and inserted into the event queue.

However, such an event-based design is not the only way to

build a DES framework. The classic design is process-based

simulation, dating back six decades to Conway’s abstraction

of coroutines (1963) [18] and the semantics of process in the

SIMULA programming language (1967) [19]. Fundamentally,

such a classic abstraction of coroutines represents threads

of execution that communicate with one another by passing

messages. We advocate that the classic process-based design

is simpler and promotes inherent concurrency, since each

network element is represented by a coroutine that makes

live progress over time, and is concurrent with all other

network elements. Packets transmitted between network ele-

ments correspond naturally to messages passed over channels

established between coroutines.

From the perspective of complexity and scalability, why do

we promote a process-based design? After all, event-based

designs are object-oriented as well, and each network element

is represented as an object instead of a coroutine. In a nutshell,

a process-based design enjoys two clear advantages. First,

it is simpler to implement a new network element with a

coroutine, because it is easier to conceive — and less error-

prone to model — an element as an isolated entity with a

fixed set of inputs and outputs, communicating with the other

elements through message passing only. Fundamentally, a

process-based design utilizes the actor model [20], [21], where

each actor maintains its private states and can only affect

one another indirectly through message passing. Second, it is

more performant because coroutines (or actors) are naturally

concurrent with a potentially higher degree of parallelism,

while all the objects in an event-based design must share the

global event queue and its scheduler within the same thread

of execution. To accommodate a larger scale, one only needs

to launch more coroutines in a process-based design, rather

than partitioning the network and using elaborate and complex

PDES mechanisms [12], [13], [22].

In this paper, we progressively introduce two new open-

source DES frameworks for network simulation1, using

process-based designs. As a starting point, ns.py serves as

a simple, proof-of-concept prototype developed in Python,

just to explore the potential benefits of process-based designs

using Python’s generators, and to utilize the flexibility offered

by Python’s dynamic types to construct complex switches

with simple elements. Despite the fact that Python is not

known to be fast, ns.py shows excellent performance and

outperforms ns-3, OmNeT++, and even DONS [14], the state-

of-the-art DES framework. To build the most performant DES

framework possible, our second DES framework, called Days,
is built with Rust, taking advantage of its compiler guarantees

for concurrency without data races. Days is designed to use

stackless coroutines, utilizing the foundation of either a lock-

free single-threaded executor for maximum single-threaded

performance, or a multi-threaded executor for maximizing

concurrency in large-scale simulation runs.

Highlights of our original contributions in this paper are

twofold. From the perspective of design, we present two new

DES frameworks with progressively better performance, and

show convincing evidence that a process-based design is a

simple, scalable, and performant choice for building DES

frameworks of the next generation. Its stellar performance

is made possible by asynchronous programming and stack-

less coroutines, two of the landmark advances in modern

concurrent software development. From the perspective of

performance, we present best practices on how a performant

DES framework should be built with Rust, as well as our

first-hand experiences building Days, which outperforms all

existing work — DES frameworks and performance estimation

tools alike — by at least an order of magnitude. As one

example, in a FatTree-32 topology with 4096 flows, ns.py and

Days delivered speedups of 29× and 1574×, respectively, over

DONS [14].

II. MOTIVATION AND RELATED WORK

Due to its value in a wide range of engineering fields,

discrete-event simulation (DES) frameworks have been widely

studied and used over the past six decades. To build a

DES framework, there have always been two alternative de-

sign choices: a process-based or an event-based design. The

process-based design dates back to the abstraction of corou-

tines as originally envisioned by Conway [18] in 1963, and

1The source code and full documentation of both ns.py and Days can be
found at their official website: https://days.sh.

the SIMULA programming language in 1967 [19]. SIMULA,

and a variety of similar later attempts such as Ada [23], have

shown that coroutines are sufficient to simulate discrete-time

events.

Process-based design. In a process-based design, a network

element to be simulated is modeled as a coroutine, which

is simply a thread of execution that can be suspended at

predefined points of execution, and resumed to a state that

it left off before suspension. When coroutines wish to interact

with one another, they do so by passing messages. From an

implementation perspective, coroutines can be implemented

in a variety of ways in modern operating systems. User-

level processes naturally implement such an abstraction, and

communicate with each other using inter-process communica-

tion. IBM’s NEST [5] and Berkeley’s REAL [6] used user-

level threads that shared the same virtual address space, and

communication was implicit via shared memory.

When using process-based simulation in DES frameworks,

all coroutines must be coupled with a globally shared fictitious

simulation clock, which is a double-precision floating-point

variable that represents discrete points in simulation time.

A dedicated executor, first introduced by SIMULA [19], is

needed to advance the simulation clock and coordinate the

execution of coroutines, analogous to a runtime manager

designed specifically for simulations.

Event-based design. Intuitively, an event in a DES frame-

work occurs at a discrete time on the simulation clock, and

migrates the simulated system from one state to another.

An event-based design models each network element as an

object that handles events with event handler functions, and

as an event is handled, more events may be produced. All

unprocessed events are stored in an event queue, sorted by

their timestamps. An event scheduler simply processes events

consecutively by their timestamp order. The LBNL Network

Simulator, ns version 1 (circa 1994), was the first DES

framework that migrated network simulation from a process-

based design used by its predecessors to an event-based design.

Design choices. From the point of view of complexity,

it is typically simpler to implement a network element as a

coroutine with a process-based design, rather than as an object

with an event-based design. This is due to the fact that the

runtime logic of a network element is a sequential algorithm,

and it is cognitively easier to implement a sequential algorithm

as it is designed step by step, rather than remodeling its logic

to multiple handlers responding to events within a finite state

machine.

Consider a Deficit Round Robin (DRR) scheduler [24],

for example, in Fig. 1(a) and Fig. 1(b). To model it as a

finite state machine with an event-based design, we need to

separate its logic into several handlers, corresponding to events

such as when an inbound packet arrives (recv()) and when

an outbound packet finishes transmission (timeout()). To

correctly implement these handlers, one needs to remember

certain states, such as the upcoming queue to visit in a round-

robin fashion, as well as the deficit counter for each queue.

When existing events are handled, new events will be produced

and inserted back into the event queue. In contrast, if we

model it as a coroutine, the DRR scheduler can be simply

https://days.sh

1/28/24, 5:50 PM event-vs-process-vs-generator.svg

file:///Users/bli/Desktop/event-vs-process-vs-generator.svg 1/1

Fig. 1. Deficit Round Robin scheduler: Event-based vs. process-based designs. To implement a process-based design, one can use cooperatively scheduled
coroutines (b) or generator functions supported by Python (c).

implemented as a loop. In each iteration, it receives inbound

packets, moves on to the next queue, and selects and sends

one or several outbound packets in a round-robin fashion. All

packets are sent by passing messages between coroutines.

Data-oriented design. A recently proposed DES frame-

work, called DONS [14], proposed a different way of increas-

ing the degree of parallelism by using a data-oriented design

using the Unity game engine, traditionally used for developing

games [25]. To improve cache consistency, DONS proposed

to store data of the same type (e.g., timestamps in all the

packets) together; and to improve data parallelism, it advocated

processing a batch of data (e.g., packets) concurrently using

multiple threads. Unfortunately, in more complex cases such

as with Weighted Fair Queueing (WFQ) schedulers [26],

packets will need to be individually processed consecutively

for correctness, as the choice of the next packet to be for-

warded depends on previous decisions. As such, the degree of

data parallelism may be limited in most simulation scenarios

if discrete events are to be strictly processed in the order

of their timestamps. If such strict order can be moderately

relaxed, Days incorporates several optimizations — such as

time quantization — that exploit data parallelism as well, albeit

at a slight cost in accuracy.

Network performance estimation. In recent years, network

performance estimation tools [15], [16], [17] were proposed

to address the lack of scalability with DES frameworks by

accepting a moderate loss of accuracy as a trade-off, as

compared to the ground truth produced by full-fidelity DES

frameworks. The general strategy, shared by all performance

estimation tools, is to use a deep neural network (DNN) model

to represent a portion of the network topology or a single

network device, and to train it using ground-truth datasets

from DES frameworks. After the DNN model has been trained

properly, it can be used for inference on GPUs using batches of

packets as inputs, and important performance metrics — such

as throughput, round-trip times, and flow completion times —

can be deducted. The loss of accuracy, compared to ground

truth from DES frameworks, is typically evaluated with the

Wasserstein distance [27]. However, it is not clear how often

the DNN models need to be retrained using new ground-truth

data; it would be inconvenient, or even feasible, to train these

models often, as such training may take hours to complete.

III. A TALE OF TWO SIMULATORS

A. Openings

Complexity. In his article [28] titled “A Plea for Lean

Software,” Niklaus Wirth made the claim that “software’s girth

has surpassed its functionality,” and that such complexity was

due to software’s monolithic design, in that all features are

available all the time. We are of the opinion that current

DES frameworks, such as ns-3 [9] and OmNeT++ [11], are

too complex to use, to extend, and more importantly, to

become performant at scale. If we use lines of code (LOC)

— not including examples and tests — as a crude measure

of complexity, while early frameworks such as REAL and ns-

1 both had 15K LOC, the latest release of OmNeT++ had

257K LOC, ns-2 had 286K LOC, and ns-3 had 551K LOC!

We advocate that one should get back to basics and, starting

from a process-based design, build each network element with

simplicity as a design principle. As Wirth proclaimed [28]:

“Ideally, only a basic system with essential facilities would be

offered, a system that would lend itself to various extensions.”

As a starting point, few programming languages are simpler

or more ubiquitous than Python. But does it offer suitable

language-level support for a process-based design? Coroutines,

which coexist in the same kernel thread and are cooperatively

scheduled, have been supported since Python 3.4, and the

async/await keywords have been supported since Python 3.5.

Alternatively, one can use generator iterators, as coroutines

and generator iterators are flip sides of the same coin: With a

generator iterator created by a generator function containing

yield calls, each yield temporarily suspends processing,

remembering the current execution state. When the generator

iterator resumes, it restarts execution where it left off [29],

just as a cooperatively scheduled coroutine would do.

The first DES framework we have designed for network

simulation, ns.py, uses the facility of generator functions in

Python to realize the process-based design. It is simple to

define generator functions, called run(), in network elements

in ns.py, as one needs to yield to other coroutines in two

cases only: waiting for an inbound packet, or for a timeout

before sending out the next outbound packet, as we illustrate

in Fig. 1(c). The following First-Come-First-Served (FCFS)

scheduler is even simpler, including only an infinite loop:

1 def run(self):

2 while True:

3 p = yield self.store.get()

4 yield self.env.timeout(p.size * 8.0 / self.rate)

5 self.out.put(p)

At line 3, yield is used to suspend the execution of

this coroutine until a new packet can be retrieved from

the scheduler’s own store, which is a FCFS queue. After

execution resumes at line 4, the packet p is guaranteed to

be retrieved, and we only need to wait for a period of time,

which is the packet’s transmission delay, to send it out. We

use yield again for such waiting, suspending execution until

the globally shared simulation clock is advanced beyond the

specified timeout value. At that time, execution would resume

again, and we send it out to the next-hop network element,

defined as self.out, by calling its put() function.

All network elements implement put(), and the FCFS

scheduler is no exception:

def put(self, packet):

self.store.put(packet)

Of course, the actual FCFS scheduler implementation in

ns.py needs to implement more features, such as a FCFS

queue with a bounded buffer size. The logic, however, remains

the same and strikingly simple: when an upstream element

calls put(), the scheduler only needs to place it in its own

queue (when certain conditions are satisfied). The scheduler

executes this function, however, in its upstream element’s

coroutine, rather than its own run() coroutine. Calling the

put() function of another element, therefore, is just a simple

and ingenious mechanism to pass messages between corou-

tines by taking advantage of dynamic types — a Pythonic way

of writing code. To connect two network elements, only one

line of code is needed. For example, to connect an upstream

DRR scheduler with a downstream packet sink:

drr_scheduler.out = sink

Composability. As Python is a dynamically typed language,

types are only determined at runtime. ns.py takes advantage of

dynamic types to support a unique feature that more complex

network elements can be composed by connecting multiple

simpler elements, each of which can have no buffers at all.

For example, one may compose a fair output-queued packet

switch with a finite buffer size and a fair scheduler, such

as a DRR scheduler, simply by defining a FCFS scheduler

with a finite buffer size and a packet dropping strategy, and

connecting it to a downstream DRR scheduler with no buffer

at all — by specifying the option that zero_buffer ← True.

The upstream element would also need to have the knowledge

that its downstream element has no buffers, by specifying

zero_downstream_buffer ← True. Despite the fact that it

is deceptively simple to use this feature, its implementation

is non-trivial, and infeasible without using Python’s dynamic

types.

Simplicity. With the use of yield calls in generator func-

tions, our experience is that it becomes much simpler to extend

ns.py with a new network element, by implementing its run()

Category Network Elements

Scheduling
FCFS, DRR, WFQ, Static Priority, Virtual
Clock

Packet dropping Tail drop, Random Early Detection

Traffic generation
Distribution-based, trace-based, TCP Reno,
TCP CUBIC, BBRv3

Demultiplexing Flow Information Base, random, flow-based

Routing Random simple path, shortest path

Traffic shaping Token bucket, two-rate three-color token bucket

TABLE I
ESSENTIAL NETWORK ELEMENTS SUPPORTED IN ns.py.

coroutine with a process-based design. Unlike event-based

designs, there are no event handlers to implement and no state

to keep track of after resuming execution. It is not unusual to

simply use an infinite loop as in our example, since the runtime

executor, env, only runs for a finite amount of simulation

time. Within the loop, one only needs to yield the CPU to

other coroutines until a future event — even the choice of this

keyword makes sense!

Through the lens of lines of code (LOC), a crude measure

of complexity, ns.py should be considered simpler than all

existing DES frameworks. It includes a curated collection of

essential network elements, shown in Table I, with only 3235

LOC. To implement a complete simulation with a FatTree

topology, only 54 LOC is necessary. With popular simulators

hovering at 200-500K LOC, this level of simplicity can

genuinely be called “lean software.”

B. Adjournment

With ns.py’s simplicity and ease of use, it is primed for

fast prototyping of new designs at relatively small network

scales. Yet, before v3.14, Python code runs single-threaded

due to the Global Interpreter Lock (GIL), and performance is

widely known to be lacking. As we concluded in Section II,

the main advantage of the process-based design is its ease

of achieving a higher degree of parallelism using multiple

threads and additional CPU cores: one only needs to launch

new coroutines. ns.py would not be able to enjoy such an

advantage as it is forced to be single-threaded by Python. We

are back to square one: would it be feasible to design a new

DES framework with the best of both worlds: performant with

the simplicity of a process-based design?

Let us revisit Conway’s abstraction of coroutines [18]. In

OmNeT++, process-based design is supported using coroutines

with dedicated stacks [30]. With such stack-based coroutines,

context switches between different coroutines are inefficient

due to the presence of the local call stack. If coroutines could

be implemented without using stacks, the lack of runtime

efficiency would “vanish entirely,” as proclaimed by Weber et

al. [31]. At the high level, such stackless coroutines advocate

that local data within a coroutine is best stored as fields in an

active instance of the coroutine, rather than in a stack frame.

Suspending execution in a stackless coroutine is, therefore,

mapped to an ordinary return statement, and context switches

become as fast as simple function calls.

While planning started initially in 2016 [32], stackless

coroutines were only officially supported in the stable Rust

programming language with the advent of async/await re-

cently [33]. The Rust compiler natively supports capturing

local fields and the program counter in the Future struc-

ture. Various runtime executors are supported by third-party

libraries, such as tokio [34], by “polling” lazy coroutines.

Dubbed zero-cost futures [33], there is zero runtime overhead:

a stackless coroutine in Rust is just a fancier way of creating

a finite state machine [35] — a hallmark of event-based

simulation!

Stackless coroutines aside, Rust enjoys many other advan-

tages as a modern programming language, such as zero-cost

abstraction, memory safety, as well as conservative ownership

rules enforced by the compiler. With Rust, it is guaranteed

that there will not be any data races across multiple threads,

each corresponding to a CPU core and accommodating a

large number of coroutines. Needless to say, as we set out

to design and build Days, our new, simple and performant

DES framework, Rust is our natural choice.

Unfortunately, though they have been planned for a future

release, Rust does not yet support generator functions as

Python does. This makes it unlikely to directly migrate our

design and implementation from ns.py to Days. To start from

the ground up, we selected tokio [34], a well-maintained multi-

threaded executor in Rust, as our executor of choice. As tokio

is primarily designed for networking I/O, it is not only multi-

threaded — each hosting a large number of coroutines —

by default, but also supports common thread synchronization

primitives such as a semaphore [36], which maintains a set

of permits that are used to synchronize access to a shared

resource. In addition, it provides excellent support for highly

performant channels [37]; messages can easily be passed be-

tween coroutines with tokio’s multi-producer, single-consumer

(MPSC) channels, which are able to buffer an unbounded

number of messages for future delivery.

In network simulation, there are only two cases in which

the simulation clock may need to be advanced: 1 when a

coroutine is waiting to receive a message from its MPSC

channel; and 2 when it needs to time out for a period of

simulation time by going to sleep. But when do we advance

the simulation clock? The key insight is that the simulation

clock should only be advanced when the simulation reaches

a state of quiescence and no coroutines are active; i.e., they

are all blocked waiting for a message or a timeout. This is

fundamentally a deadlock across coroutines, which is to be

avoided at all costs in a conventional multi-threaded executor

such as tokio.

With such a conundrum between the need to avoid or to

seek a deadlock, we argue that it is still feasible to simulate

discrete events using tokio, a conventional executor. Fig. 2(a)

illustrates how we use a globally shared trio, involving a binary

heap sorted by wake-up time, the current simulation time, and

a single semaphore, to advance the simulation clock correctly.

The binary heap keeps track of a collection of (sender, wake-up

time) tuples, sorted by wake-up times. The number of available

permits in the semaphore is used to keep track of the number

of live coroutines; only when it is reduced to zero should we

advance the simulation clock to the minimum wake-up time

popped from the binary heap. We check if the simulation clock

Coroutine

run()

recv()

timeout()

loop

Conventional multi-threaded executor

Binary heap
#1 (sender, time)
...

per
mit

 -1

pop an element
and advance

simulation clock

no permit?

no permit?

per
mit

 -1
per

mit permit

permit

push (sender,
wake-up time)

Semaphore Coroutine with the Mailbox Model

m
ai
lb
o
x

o
u
tp
u
t

Custom multi-threaded executor for DES only

recv()

forward to
other coroutine

run() send()

schedule
(timeout)

timeout
reached

packet from
other coroutines

(a) Failed first cut design using a globally
shared binary heap and semaphore.

(b) Days with the mailbox model and
its custom multi-threaded executor.

Fig. 2. (a) A failed first cut design. (b) Days with the mailbox model and
its custom multi-threaded executor.

should be advanced whenever a coroutine blocks itself, either

to receive a packet or to time out.

In our first-cut design, the simulation clock is only advanced

when the number of available permits is 0, which implies that

no coroutines are currently alive and running, and a state

of deadlock has been reached. When the simulation clock

is advanced, it is advanced to the next wake-up time of the

nearest coroutine in time, decided by popping an event from

the binary heap.

The binary heap includes a collection of (sender, wake-up

time) tuples, sorted by their wake-up times. Each entry in the

binary heap is pushed right before a coroutine attempts to

time out, and to sleep until a specific wake-up time is reached.

When this occurs, a coroutine would create a one-shot channel

using tokio (our runtime executor), and store the sender of the

channel as the first element of the tuple to be pushed onto the

binary heap.

There are two occasions when a coroutine goes to sleep:

1 when it needs to receive a packet, arriving from other

coroutines via an MPSC channel; and 2 when it times out

waiting for a specific wake-up time in the future. In both

occasions, the coroutine would need to acquire a permit from

the globally shared semaphore before going to sleep, and

release the permit back to the semaphore after waking up.

When a coroutine is initialized, it adds a new permit to the

semaphore; and when it is terminated, it permanently removes

one permit. This way, the number of available permits in the

semaphore will accurately reflect coroutines that are currently

alive.

Performance. Much to our dismay, despite the fact that

it has access to multiple CPU cores, our first-cut design

underperformed ns.py by 6× in a FatTree-4 topology with

8 flows, achieving a mean running time of 1.898 seconds and

a Standard Error of Mean (SEM) of 0.004 over 5 runs, as

compared to 0.32 seconds (SEM 0.005) with ns.py, as well

as an abysmal CPU utilization of only 10.3%. This is due

to the fact that it spent the vast majority of its time waiting

for the globally shared context, to access the binary heap,

the semaphore, and the simulation clock. Since coroutines are

typically very simple in their logic in network simulations — a

FCFS scheduler only needs to dequeue a packet and send it out

— as the number of coroutines scales up, the time competing

for shared states would play an overwhelming role. Though the

first cut failed, our efforts were far from futile: we understood

that to maximize parallelism, the fundamental challenge is to

share as little state as possible, as we advance the simulation

clock only when a deadlock among coroutines emerges and a

state of quiescence is reached.

C. Fork

Mailbox model and custom executor. Now that we are

back to square one, the only remaining alternative is to build

our own custom multi-threaded executor, with the sole purpose

of supporting discrete-event network simulations. This is also

an excellent opportunity to revisit our concurrent programming

abstraction to realize process-based simulation: how, after all,

should coroutines run and interact with one another in a simple

and performant way?

We decided that the process-based design should be best

implemented with what we refer to as the mailbox model,

where each coroutine still maintains its own states during

its execution, but only interacts with the external world via

our new custom multi-threaded executor using a mailbox.

With the mailbox model, each network element is an isolated

coroutine with one mailbox and an arbitrary number of outputs

connecting to other network elements. Our custom executor

supports an Application Programming Interface (API) that

allows a coroutine to be initialized with a new mailbox, to

connect its output to public interfaces — such as recv() for

inbound packets — in other coroutines via their mailboxes,

and to schedule a timeout with a callback when it is reached.

All possible performance optimizations are to be implemented

within the executor, and the entire network topology is built

upon its launch.

As we illustrate in Fig. 2(b), when a packet arrives at a

network element, its recv() processes it by forwarding to

another element or enqueuing it locally, and then calls run() if

needed. In run(), we call our custom executor’s schedule()

to send out the packet to the coroutine’s output at a later

time, and the output is connected to a downstream network

element during initialization. To implement run(), we may

use a loop or, alternatively, schedule to call itself recursively

after a timeout.

Under the hood, rather than exposing the binary heap for

blocked coroutines and the simulation clock for global sharing,

the custom multi-threaded executor is now responsible for

maintaining these states locally in its own dedicated thread.

The packets exchanged between network elements are im-

plemented as async closures in Rust, which are forwarded

by the custom executor via an asynchronous and bounded

MPSC channel. Whenever all coroutines complete their local

computations and a deadlock is reached, the custom executor

is responsible for advancing the simulation clock, by managing

its own priority queue containing all future events. It incor-

porates many performance optimizations, including a work-

stealing strategy similar to that of tokio, which balances the

workload across CPU cores. Days also supports a single-

threaded executor to eliminate most runtime overhead related

to mutex locks when multiple threads contend for shared

states, which is useful when running less complex simulations.

Simplicity. As shown in Fig. 2(b), Days’ mailbox model

is simple, as all performance-optimized machinery has been

Category Network Elements

Topologies FatTree, 2D and 3D Torus, custom

Scheduling
FCFS, DRR, WRR, Static Priority, WFQ, Vir-
tual Clock

Packet processing ECN, Tail Drop, Random Early Detection

Traffic generation
Distribution, TCP Reno, TCP CUBIC, DC-
QCN, BBRv3

Demultiplexing Flow Information Base

Routing Random simple path, shortest path, ECMP

Link Layer Priority-based Flow Control

TABLE II
ESSENTIAL NETWORK ELEMENTS SUPPORTED IN Days.

moved into the custom multi-threaded executor itself. As no

states are shared between network elements, there is no fear

for data races, and no need for either mutual exclusion locks

or atomic reference counting. From the perspective of users,

Days is fully configurable using toml configuration files.

Despite its simplicity, Days’ mailbox model is versatile as

well, as we are able to incorporate essential network elements

shown in Table II, including complex scheduling disciplines

such as Weighted Fair Queueing (WFQ) [26], as well as

several congestion control variants (such as TCP CUBIC [38],

BBRv3 [39], and DCQCN [40]). While the custom executor

consists of 13244 LOC (a heavily customized fork from

NeXosim [41]), Days itself is built with only 8375 LOC —

or 157K tokens, fitting comfortably into the context window

of most frontier models.

Lean software. A further design choice that contributes

to Days’ efficiency is that selected protocols have been im-

plemented behind compile-time feature gates in Rust. Proto-

cols such as explicit congestion notification (ECN) [42] and

priority-based flow control (PFC) [43] are fairly complex and

implemented across several network elements; experiments

that do not require them should not need to pay a price

at runtime. By excluding them entirely from the compiled

binary by default, this design preserves conceptual economy:

the default build exposes only a basic set of essential elements,

while specialized mechanisms are introduced explicitly when

needed. Days enforces a strict “pay-for-what-you-use” cost

model: when a protocol is disabled, its code paths are not

merely bypassed at runtime but are absent at compile time, so

it incurs no additional branches or state maintenance.

D. End Game

In large-scale simulation runs, Days may progress through

hundreds of thousands of distinct timestamps where the global

simulation clock advances. Each such timestamp — a “step”

— induces a recurring sequence of runtime operations: ex-

tracting the next set of events at the minimum deadline,

materializing the corresponding task groups, executing them

to quiescence as a deadlock is reached, and repeating. When

step counts are high, even modest per-step overhead becomes a

dominant term in wall-clock time. To further improve Days’
performance, we therefore concentrated on reducing 1 the

number of actions that interact with globally shared states, 2

the number of times such interactions require synchronization,

and 3 the number of steps for which the full quiescence

barrier must be paid.

Minimizing contention for globally shared states. There

are only two actions in a network element that may contend for

globally shared states: 1 reading the global simulation clock,

and 2 scheduling events for future execution in a shared

global event queue. To minimize the number of reads from

the global simulation clock, each read should be saved and

shared between network elements as much as possible. Since

packets are always forwarded between network elements, they

are excellent vehicles for carrying the current simulation time:

once a read is saved by an upstream element, its downstream

counterpart can extract the current simulation time directly

from a received packet, rather than from the global simulation

clock.

To minimize contention for the global event queue, we

attempt to fuse the scheduling of multiple events into a single

request as much as possible. In a packet scheduler, for exam-

ple, each packet is forwarded by scheduling two immediately

consecutive events after a timeout: one to transmit a packet,

another to run a new iteration of the scheduling discipline. In

Days, we not only fuse these consecutive actions into a single

scheduling request, but also attempt to fuse the scheduling of

a batch of packets into a single request. Operationally, some

network elements, such as FIFO schedulers, can compute a

bounded lookahead window of departures and submit that

window as a batch. In the same spirit as data-oriented de-

sign [14], this strategy preserves packet-level behavior while

substantially reducing the frequency of synchronization for

inserting into the global event queue.

Local event buffers with deterministic flushing. Bulk

insertion reduces the number of global queue lock acquisitions;

but concurrent worker threads in the executor may still produce

scheduled events at high rates. Days’ design incorporates

per-worker local event buffers: Rather than inserting every

newly produced event immediately into the global event queue,

workers append events to local buffers, which are flushed at

step boundaries when the executor reaches a deadlock and is

quiescent. With this design, most scheduling activity remains

local during a step, minimizing global lock traffic while

the deterministic ordering for same-timestamp events is still

preserved. Equally important, the flushing rule is semantic:

local event buffers are drained only when no model tasks

are executing, aligning with the correctness requirements of

conservative parallel discrete-event simulation, where global

progress is coordinated at well-defined boundaries [12], [44].

Time quantization. When the number of distinct times-

tamps is excessively large, the quiescence barrier is paid

too frequently. To reduce the total number of steps taken,

timestamps can be quantized in Days when the executor

schedules actions to take place next. With time quantiza-

tion, event deadlines are snapped to a grid. This coalesces

near-identical deadlines that arise from floating-point drift,

accumulated rounding error, or fine-grained pacing timers,

thereby increasing the number of actions executed per step and

improving data parallelism in a similar vein as data-oriented

design [14]. When opted in for a potential performance boost,

the granularity of time quantization — which may affect

simulation accuracy — can also be configured and threaded

through topology construction.

Keeping threads warm across step boundaries. Reducing

the number of steps mitigates the number of barriers; the

barrier itself must also be efficient. A substantial component of

barrier cost in Days’ multi-threaded executor is the repeated

transition of workers into and out of OS-level sleep states.

In workloads with many short steps, frequent sleep/wake-

up transitions can dominate execution time. Days therefore

implements a warm-pool policy with several complementary

mechanisms: 1 At the start of each run, the executor proac-

tively wakes up several “hot” worker threads, ready to run

tasks. 2 Before sleeping, the main thread briefly spins to

avoid a full sleep transition when new work is likely to arrive

imminently. 3 On worker threads, a linger-then-sleep strategy

keeps a designated subset of workers in a standby state for a

short interval. If the next step begins promptly, workers can

resume without a wake-up. Overall, Days’ warm-pool policy

reduces the overhead of reactivation across adjacent steps.

IV. PERFORMANCE EVALUATION

While Days is a natural choice when performance is needed,

ns.py may very well stand on its own when we wish to rapidly

prototype the design of new protocols at smaller network

scales. We now evaluate the performance and scalability

of both frameworks, in comparison with the state-of-the-art

in both discrete-event simulation and network performance

estimation tools.

Baseline benchmarks. As initial baseline benchmarks, we

choose FatTree topologies configured with FCFS schedulers,

which were widely used in the literature [14], [15], [17]. Each

flow in our evaluation sends 1500 packets of 1000 bytes in

size. In this context, we use the following four benchmarks

for our comparisons: 1 FatTree-4 (i.e., k = 4) and 8 flows;

2 FatTree-8 (k = 8) and 64 flows; 3 FatTree-16 (k = 16)

and 512 flows; and 4 FatTree-32 (k = 32) and 4096 flows2.

We carried out our experiments on a consumer-grade server

with Intel i7-13700K (16 CPU cores), 128 GB of physical

memory, and an NVIDIA GeForce RTX 4090. We used ns-3

3.40 and OmNeT++ 4.5; ns.py’s runs used Python 3.13. Each

experiment involved 5 runs, with the mean and SEM shown

in Fig. 3. Due to substantial performance differences across-

the-board, the running time on the y-axis uses a logarithmic

scale.

The scale of the first two benchmarks is relatively small,

which serves as a fitting starting point. Despite their com-

plexity and numerous claims to the contrary (e.g., [14], [15],

[17]), ns-3 and OmNeT++ performed surprisingly well, after

we spent a considerable amount of time fine-tuning their

implementations for fair comparisons. Rather than over two

hours for a FatTree-4 topology as claimed in the literature [17],

OmNeT++ took only 1.91 seconds in our first benchmark.

Rather than a 3× speedup claimed in [14], DONS performed

2We chose these benchmark configurations because they were the ones
that DONS can work with. It turned out that, though its source code has been
publicly available, DONS’ authors confirmed that the executable compiled
from its source code failed to run. For this reason, we had to run the provided
pre-compiled executable, which only supported these baseline benchmarks. All
benchmarking configurations in ns.py and Days have been made available
as open source for more reproducible research.

slightly worse than both ns-3 and OmNeT++. Surprisingly,

despite the performance penalty imposed by Python, ns.py
outperformed both ns-3 and OmNeT++ in the FatTree-4 topol-

ogy, and outperformed DONS with a 12× speedup.

over an hour

1

100

10000

ns−3 P−ns−3 OmNeT++ DONS ns.py Days (ST) Days (MT)
DES Frameworks

R
un
ni
ng

Ti
m
e
(s
ec
on
ds
)

k = 4, 8 !ows k = 8, 64 !ows k = 16, 512 !ows k = 32, 4096 !ows

0.03
0.09

5.24

0.33

170m30.1s

5m55s

25.6s27.0 22.7 20.5

0.30

2.94
1.64

6.5s

296.4

32.5

1.79

5.77

1.91 2.88

0.24

2.08

1.55

Fig. 3. ns.py outperformed all existing DES frameworks in baseline bench-
marks, including DONS. Packing even more performance, Days outperformed
ns.py by up to 55×, and outperformed DONS by 32×, 17×, 14×, and
1574× in these baseline benchmarks, respectively.

When we moved to the FatTree-8 topology, ns-3 with a

single process — as well as OmNeT++ — started to slow

down quite substantially, but its parallelized counterpart, with

9 logical processes running on 9 different CPU cores and

communicating with one another using the Message Passing

Interface (MPI), performed admirably well, almost offering a

linear speedup. Our results again diverged from experimental

results reported in the literature [14]. DONS, while having

the opportunity to use all our 16 CPU cores, outperformed

parallelized ns-3 slightly, but its performance was a far cry

from a speedup of 3× over parallelized ns-3 as it originally

claimed [14]. ns.py, while running with only one thread on a

single CPU core, was 15× faster than OmNeT++ and 3.4×
faster than DONS. In the FatTree-16 benchmark, ns.py was

marginally faster than DONS; and interestingly, neither vanilla

nor parallel ns-3 were scalable at all: they both took over an

hour before we terminated the jobs.

We now turn to Days, and show its performance with both

single-threaded (ST) and multi-threaded (MT) executors. In

the case of FatTree-4, while the previously fastest framework,

ns.py, took 0.32 seconds, Days (ST) took only 0.03 seconds,

representing a speedup of 96× over DONS. In the case of

FatTree-8 and FatTree-16, Days (ST) outperformed ns.py by

5× and 7×, respectively; it also achieved a speedup of 17×
and 8× over DONS, respectively, and a speedup of 100×
over OmNeT++ with FatTree-16. But with FatTree-16, the true

winner is Days (MT), achieving a 1.8× speedup over Days
(ST), and a 14× speedup over DONS.

Finally, with the FatTree-32 topology and 4096 flows, we

only evaluated DONS and ns.py against Days, as it was

not feasible to wait for the other contestants. This was a

benchmark where Days (MT) excelled: a 55× speedup over

ns.py, and a 1574× speedup over DONS — we double-

checked our configurations and they were indeed this fast! Our

performance optimizations on Days’ multi-threaded executor

have also catapulted it to a significant 4× speedup over the

Benchmark MimicNet ns.py
Days
ST

Days MT

FatTree-4,
8 flows

9.46s (±
0.11s)

0.24s (±
0.005s)

0.03s (±
0.0006s)

0.09s (±
0.0024s)

FatTree-8,
64 flows

23.32s (±
0.27s)

1.55s (±
0.02s)

0.30s (±
0.011s)

0.33s (±
0.002s)

FatTree-16,
512 flows

567.5s (±
2.50s)

20.3s (±
0.10s)

2.94s (±
0.119s)

1.64s (±
0.026s)

TABLE III
NOT INCLUDING THE TRAINING TIME, MIMICNET IS STILL NOT

COMPETITIVE AGAINST ns.py AND Days.

single-threaded executor. Suffice it to say, Days was fast.

Network performance estimation. We then turned our

attention to recent tools for network performance estimation

— MimicNet [15] and DeepQueueNet [17] — by running

their vanilla source code without modifications. It turns out

that the source code for DeepQueueNet only supports the

FatTree-4 topology; and with 5 test runs, the mean running

time we measured was 174.63 seconds, with an SEM of

2.66 seconds. This was substantially slower than all DES

frameworks. Granted, the single NVIDIA GPU on our server

did not satisfy its 4-GPU hardware requirement, and inference

was performed on the CPUs. Still, even with the benefit of 4

GPUs, the performance of our frameworks, at 0.24, 0.03, and

0.09 seconds, may still be quite competitive.

The source code of MimicNet [15] can indeed support

all three benchmarks, and we again carried out 5 test runs

each, using CPU cores to perform both training and inference,

as the CUDA version supported by MimicNet no longer

supports current-generation NVIDIA GPUs. As we show in

Table III, it was not competitive in performance, which is

the primary motivation for designing network performance

estimators. Even ns.py outperformed MimicNet by 20×, not

to mention Days. In addition, our MimicNet results did not

include the time needed for training, which took an average

of 211 minutes and 24.3 seconds for the FatTree-16 topology.

Scaling up the number of flows. Now that ns.py and

Days have both outperformed existing DES frameworks and

performance estimators, we continue with a more in-depth

analysis on their scalability with respect to the number of flows

in a FatTree-32 topology. Flows in each simulation ran for 10

seconds, produced traffic at 10 Mbps, and used TCP CUBIC

as their congestion control protocol. The link capacities were

set as 100 Mbps. The running time on the y-axis, again,

uses a logarithmic scale. As Fig. 4(a) shows, ns.py’s running

times increased exponentially with the exponential increase

in the number of flows simulated; the line graph is almost

linear when plotted using the logarithmic scale. This shows

that the runtime overhead was relatively fixed, in that no

extra workload was performed per flow as more flows were

simulated. In contrast, Days ST and Days MT were much

more performant — both overall and on a per-flow basis —

as the number of flows scales up. In particular, exactly as we

expected due to its multi-threaded executor, Days MT craved

more workload, and was able to catch up with its single-

threaded sibling as the number of flows reached beyond 64. At

these larger scales, the speedup offered by parallelism caught

up with the synchronization overhead. It is also worth noting

1

10

100

1000

8 16 32 64 128 256 512 1024

Number of Flows

R
u

n
n

in
g

 T
im

e
 (

s
e
c
o

n
d

s
)

ns.py Days (ST) Days (MT)

(a) Varying the numbers of flows in FatTree-32.

10

15

20

25

30

4 8 16 32 64 96 128 192 256

Size of the FatTree Topology

R
u

n
n

in
g

 T
im

e
 (

s
e
c
o

n
d

s
)

Days (ST) Days (MT)

(b) Scaling up the topologies with 128 flows.

0

20000

40000

60000

4 8 16 32 64 96 128 192 256

Size of the FatTree Topology

M
ax
im
um

R
es
id
en
tS
et
Si
ze
(M
B
)

Days (both ST and MT)

50.4 69.8 88.6 1091 3570
8633

28352

68646

151.7151.7151.7

(c) Memory footprint as topologies scale up.

Fig. 4. Performance of ns.py, Days (ST) and Days (MT) at scale.

0

5

10

15

20

Days (MT)
with Local Time

with Batch Event Scheduling
and Local Event Buffers

with Time Quantization with All Optimizations

Performance Optimization Strategy

R
un
ni
ng

Ti
m
e
(s
ec
on
ds
)

Days (ST) Days (MT)

20.9

16.7 16.7 16.7 16.7

23.3

4.60
3.32

Fig. 5. Optimizing the performance of Days’ multi-threading: how various
strategies helped.

that with fewer than 64 flows, both Days (ST) and Days
(MT) took less than 10 seconds to finish a simulation with a

10-second duration in simulated time!

Scaling up the size of the topology. In a similar vein,

we wish to evaluate scalability with respect to the size of

the network topology, moving from a FatTree-4 topology up,

through FatTree-64 (the largest ever tested in the literature)

all the way to FatTree-256 (with 4,194,304 hosts and 81,920

switches). Our results — with ns.py excluded as it was

unable to accommodate some of these scales — are shown

in Fig. 4(b), with 128 flows simulated, link capacities of 100

Mbps, and TCP CUBIC for congestion control. It was evident

that both Days (ST) and Days (MT) scaled well all the way

up to FatTree-256; Days (ST) was faster at smaller scales, but

was outperformed by Days (MT) beyond FatTree-16. Since

shortest paths between hosts were of similar lengths as the

topology scales up, the running times remained steady.

Peak memory footprint. As we show in Fig. 4(c), Days
(both ST and MT) offered excellent efficiency regarding its

peak memory footprint, as measured by the maximum resident

set size (RSS) (obtained with /usr/bin/time -v), as the

network scales up from FatTree-4 to FatTree-256 using the

same experimental settings as Fig. 4(b). For example, Days
consumed only 2.96 GB with FatTree-96 and 8.43 GB with

FatTree-128. This level of memory footprint can be easily

accommodated by modern consumer-grade computers.

Performance optimizations. Finally, we show how our

performance optimization strategies helped Days (MT) out-

perform its single-threaded counterpart. Fig. 5 shows the

running times of a simulation using a FatTree-96 topology

with 512 flows. With locally maintained simulation times

using packets — which reduced contention for the global

simulation clock — Days (MT) was about 40% slower than

Days (ST). By adding batch event scheduling and local event

buffers, contention for the global event queue was reduced,

improving the performance by 11%; but it was still 25% slower

than Days (ST). It was the addition of time quantization

that substantially helped multi-threading performance, as more

parallelism can be achieved by snapping timestamps to a grid;

yet such a performance gain comes with a (controllable) loss

of simulation accuracy. Ultimately, when everything is said

and done — including warm threads across step boundaries

— Days (MT) is 5× faster than Days (ST), a feat not to be

dismissed lightly.

V. CONCLUDING REMARKS

This paper reflects five years’ worth of research towards

building simpler and more performant discrete-event network

simulation frameworks, as we roll back to the basics and

revisit every design decision. When we penned and committed

the first line of code five years ago, we never imagined

such handsome payoffs — brought to us by a more intuitive,

decades-old process-based design, as well as modern advances

in concurrent programming, with generator functions, runtime

executors, stackless coroutines, and fearless concurrency of-

fered by Rust, all ushered in by the recent desire of building

highly performant cloud services.

While we are pleasantly impressed by the raw performance

of both ns.py and Days as they outperformed all existing DES

frameworks and network performance estimation tools by at

least an order of magnitude, the highlight of this work lies in

its inherent simplicity, by paring decades of work down to the

bare essentials, and then building them back up. We are true

believers that lean software is easier to use and to extend, and

with 3235 LOC in ns.py and 8375 LOC in Days, we argue

that the foundation for discrete-event network simulation is

no exception. Though these frameworks are still in their early

days and new network elements will be added brick by brick,

with a refreshingly simple and highly performant foundation,

the bright days of discrete-event network simulation are yet to

come.

REFERENCES

[1] x.ai, “Announcing Grok,” https://x.ai/, Nov. 2023.

[2] J. Pezzone, “Zuckerberg and Meta set to purchase 350,000 Nvidia
H100 GPUs by the end of 2024,” https://www.techspot.com/news/
101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html,
Jan. 2024.

[3] W. Won, T. Heo, S. Rashidi, S. Sridharan, S. Srinivasan, and T. Krishna,
“ASTRA-sim2.0: Modeling Hierarchical Networks and Disaggregated
Systems for Large-model Training at Scale,” in Proc. IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2023, pp. 283–294.

[4] A. Shah, V. Chidambaram, M. Cowan, S. Maleki, M. Musuvathi,
T. Mytkowicz, J. Nelson, O. Saarikivi, and R. Singh, “TACCL: Guiding
Collective Algorithm Synthesis using Communication Sketches,” in
Proc. 20th USENIX Symposium on Networked Systems Design and

Implementation (NSDI). USENIX, 2023, pp. 593–612.

[5] A. Dupuy, J. Schwartz, Y. Yemini, and D. Bacon, “NEST: A Network
Simulation and Prototyping Testbed,” Commun. ACM, vol. 33, no. 10,
p. 63–74, Oct. 1990.

[6] S. Keshav, “REAL: A Network Simulator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/CSD-88-472,
Dec. 1988. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/
TechRpts/1988/CSD-88-472.pdf

[7] S. McCanne, S. Floyd, and K. Fall, “ns version 1: LBNL Network
Simulator,” https://ee.lbl.gov/ns/, 1995.

[8] T. Issariyakul and E. Hossain, “Introduction to Network Simulator 2
(NS2),” in Introduction to Network Simulator 2 (NS2). Springer, 2009,
pp. 1–18.

[9] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15–
34.

[10] Z. Lu and H. Yang, Unlocking the Power of OPNET Modeler. Cam-
bridge University Press, 2012.

[11] A. Varga, “A Practical Introduction to the OMNeT++ Simulation Frame-
work,” in Recent Advances in Network Simulation: The OMNeT++

Environment and its Ecosystem. Springer International Publishing,
2019, pp. 3–51.

[12] K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation via
a Sequence of Parallel Computations,” Commun. ACM, vol. 24, no. 4,
p. 198–206, Apr. 1981.

[13] D. R. Jefferson, “Virtual Time,” ACM Trans. Program. Lang. Syst.,
vol. 7, no. 3, p. 404–425, Jul. 1985.

[14] K. Gao, L. Chen, D. Li, V. Liu, X. Wang, R. Zhang, and L. Lu, “DONS:
Fast and Affordable Discrete Event Network Simulation with Automatic
Parallelization,” in Proc. ACM SIGCOMM 2023 Conference. ACM,
2023, p. 167–181.

[15] Q. Zhang, K. K. W. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu,
“MimicNet: Fast Performance Estimates for Data Center Networks with
Machine Learning,” in Proc. ACM SIGCOMM 2021 Conference. ACM,
2021, p. 287–304.

[16] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas

in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[17] Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li, and
G. Zhang, “DeepQueueNet: Towards Scalable and Generalized Network
Performance Estimation with Packet-level Visibility,” in Proc. ACM

SIGCOMM 2022 Conference. ACM, 2022, p. 441–457.

[18] M. E. Conway, “Design of a Separable Transition-diagram Compiler,”
Commun. ACM, vol. 6, no. 7, p. 396–408, Jul. 1963.

[19] O.-J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA 67. Common

Base Language, ser. Report at the Norwegian Computing Center (743).
Report at the Norwegian Computing Center, 1984.

[20] Wikipedia, “Actor Model,” https://en.wikipedia.org/wiki/Actor_model,
Jan. 2022.

[21] C. Hewitt, P. Bishop, and R. Steiger, “A Universal Modular ACTOR
Formalism for Artificial Intelligence,” in Proc. the 3rd International

Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann
Publishers Inc., 1973, p. 235–245.

[22] K. Chandy and J. Misra, “Distributed Simulation: A Case Study in
Design and Verification of Distributed Programs,” IEEE Transactions

on Software Engineering, vol. SE-5, no. 5, pp. 440–452, 1979.

[23] G. Lomow and B. Unger, “The Process View of Simulation in Ada,” in
Proc. 14th Winter Simulation Conference (WSC), 1982, p. 77–86.

[24] M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit
Round-Robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375–385, 1996.

[25] J. D. Bayliss, “The Data-Oriented Design Process for Game Develop-
ment,” Computer, vol. 55, no. 05, pp. 31–38, May 2022.

[26] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queueing Algorithm,” in Proc. ACM SIGCOMM. ACM, 1989, pp.
1–12.

[27] A. Frohmader and H. Volkmer, “1-Wasserstein Distance on the Standard
Simplex,” Algebraic Statistics, vol. 12, no. 1, pp. 43–56, 2021.

[28] N. Wirth, “A Plea for Lean Software,” Computer, vol. 28, no. 2, pp.
64–68, Feb. 1995.

[29] A. M. Kuchling, “Functional Programming HOWTO,” https://docs.
python.org/3/howto/functional.html, Jan. 2024.

[30] “OMNeT++ Simulation Manual — Activity,” https://doc.omnetpp.org/
omnetpp/manual/#sec:simple-modules:activity, Jan. 2024.

[31] D. Weber and J. Fischer, “Process-Based Simulation with Stackless
Coroutines,” in Proc. 12th System Analysis and Modelling Conference.
ACM, 2020, p. 84–93.

[32] “Official Support for a New Coroutine Run-
time in Rust,” https://internals.rust-lang.org/t/
official-support-for-a-new-coroutine-runtime-in-rust/3612, Mar. 2019.

[33] N. Matsakis, “Async-await on Stable Rust!” https://blog.rust-lang.org/
2019/11/07/Async-await-stable.html, Nov. 2019.

[34] Tokio, “Tokio: Build Reliable Network Applications without Compro-
mising Speed.” https://tokio.rs/, Jan. 2024.

[35] S. Sartor, “Generalizing Coroutines in Rust ,” https://samsartor.com/
coroutines-1/, Nov. 2019.

[36] Tokio, “Tokio: Semaphore,” https://docs.rs/tokio/latest/tokio/sync/struct.
Semaphore.html, Jan. 2024.

[37] ——, “Tokio: Channels Tutorial,” https://tokio.rs/tokio/tutorial/channels,
Jan. 2024.

[38] S. Ha, I. Rhee, and L. Xu, “CUBIC: a New TCP-friendly High-speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64–74, Jul.
2008.

[39] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, p. 20–53, Oct. 2016.

[40] Y. Zhu, D. Firestone, C. Guo, J. Padhye, S. Raindel, M. Zhang, Y. Liron,
H. Eran, M. H. Yahia, and M. Lipshteyn, “Congestion Control for
Large-Scale RDMA Deployments,” in Proc. ACM SIGCOMM 2015

Conference. ACM, 2015, p. 523–536.
[41] S. Barral, “NeXosim: A High-Performance, Discrete-Event Computa-

tion Framework for System Simulation,” https://docs.rs/nexosim/latest/
nexosim/, 2025.

[42] K. K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” https://www.rfc-editor.org/rfc/
rfc3168, Sep. 2001.

[43] “IEEE Standard for Local and Metropolitan Area Networks—Virtual
Bridged Local Area Networks Amendment: Priority-based Flow Con-
trol,” IEEE Std 802.1Qbb-2011, 2011.

[44] R. M. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,
vol. 33, no. 10, p. 30–53, Oct. 1990.

https://x.ai/
https://www.techspot.com/news/101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html
https://www.techspot.com/news/101585-zuckerberg-meta-set-purchase-350000-nvidia-h100-gpus.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-472.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-472.pdf
https://ee.lbl.gov/ns/
https://en.wikipedia.org/wiki/Actor_model
https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html
https://doc.omnetpp.org/omnetpp/manual/#sec:simple-modules:activity
https://doc.omnetpp.org/omnetpp/manual/#sec:simple-modules:activity
https://internals.rust-lang.org/t/official-support-for-a-new-coroutine-runtime-in-rust/3612
https://internals.rust-lang.org/t/official-support-for-a-new-coroutine-runtime-in-rust/3612
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://tokio.rs/
https://samsartor.com/coroutines-1/
https://samsartor.com/coroutines-1/
https://docs.rs/tokio/latest/tokio/sync/struct.Semaphore.html
https://docs.rs/tokio/latest/tokio/sync/struct.Semaphore.html
https://tokio.rs/tokio/tutorial/channels
https://docs.rs/nexosim/latest/nexosim/
https://docs.rs/nexosim/latest/nexosim/
https://www.rfc-editor.org/rfc/rfc3168
https://www.rfc-editor.org/rfc/rfc3168

	Introduction
	Motivation and Related Work
	A Tale of Two Simulators
	Openings
	Adjournment
	Fork
	End Game

	Performance Evaluation
	Concluding Remarks
	References

